Package sat/SAT.ConvertToCNF
From ApCoCoAWiki
This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see ApCoCoA-1:SAT.ConvertToCNF. |
SAT.ConvertToCNF
Converts a given quadratic (cubic) system of polynomial equations (SPE) over GF(2) to CNF. Writes the CNF to a temporary file whose path is returned.
Syntax
SAT.ConvertToCNF(SPE:LIST, CuttingNumber:INT, QStrategy:INT, CStrategy:INT):STRING
Description
This function starts the conversion algorithm.
@param SPE: A List containing the polynomial equations of the system.
@param CuttingNumber: Maximal support-length of the linear polynomials when their corresponding CNF is written to the file. Could be 3 - 6.
@param QStrategy: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Adv. Lin. Partner;
@param CStrategy: Strategy for cubic substitution. 0 - Standard; 1 - Quadratic Partner;
@return The path of the file where the output was written to.
Example
-- quadratic system: Use S ::= ZZ/(2)[x[1..3]]; F1 := x[1]*x[2] + x[1]*x[3] + x[2]*x[3] + x[3]; F2 := x[2] + 1; F3 := x[1]*x[2] + x[3]; SPE := [F1,F2,F3]; CNFPath := SAT.ConvertToCNF(SPE,4,0,0); SolPath := SAT.LaunchCryptoMiniSat(CNFPath); SAT.GetResult(SolPath,S); --Result: [0,1,0] Test with: Eval(SPE,[0,1,0]);
Example
-- cubic system: Use S ::= ZZ/(2)[x[1..3]]; F1 := x[1]*x[2]*x[3] + x[1]*x[2] + x[2]*x[3] + x[1] + x[3] +1; F2 := x[1]*x[2]*x[3] + x[1]*x[2] + x[2]*x[3] + x[1] + x[2]; F3 := x[1]*x[2] + x[2]*x[3] + x[2]; SPE := [F1,F2,F3]; CNFPath := SAT.ConvertToCNF(SPE,4,1,0); SolPath := SAT.LaunchCryptoMiniSat(CNFPath); SAT.GetResult(SolPath,S); --Result: [0,0,1] Test with: Eval(SPE,[0,0,1]);