# Difference between revisions of "Package sagbi/SB.IsInSA SAGBI"

From ApCoCoAWiki

Andraschko (talk | contribs) (Created page with "{{Version|2}} <command> <title>SB.IsInSA</title> <short_description>This function tests whether a polynomial is in a given standard-graded subalgebra.</short_description>...") |
Andraschko (talk | contribs) m (<em> --> <tt>) |
||

Line 1: | Line 1: | ||

{{Version|2}} | {{Version|2}} | ||

<command> | <command> | ||

− | <title>SB. | + | <title>SB.IsInSA_SAGBI</title> |

<short_description>This function tests whether a polynomial is in a given standard-graded subalgebra.</short_description> | <short_description>This function tests whether a polynomial is in a given standard-graded subalgebra.</short_description> | ||

Line 8: | Line 8: | ||

</syntax> | </syntax> | ||

<description> | <description> | ||

− | This function takes a polynomial < | + | This function takes a polynomial <tt>f</tt> and a subalgebra <tt>S</tt> and tests whether <tt>f</tt> is an element of <tt>S</tt> using truncated SAGBI bases. |

<itemize> | <itemize> | ||

− | <item>@param < | + | <item>@param <tt>f</tt> A polynomial </item> |

− | <item>@param < | + | <item>@param <tt>S</tt> A standard-graded subalgebra, i.e. of type <tt>TAGGED("$apcocoa/sagbi.Subalgebra")</tt> and the generators of f are homogeneous polynomials with respect to the standard grading.</item> |

− | <item>@return < | + | <item>@return <tt>true</tt> if <tt>f</tt> is an element of <tt>S</tt> and <tt>false</tt> if not.</item> |

</itemize> | </itemize> | ||

## Revision as of 12:04, 26 October 2020

This article is about a function from ApCoCoA-2. |

## SB.IsInSA_SAGBI

This function tests whether a polynomial is in a given standard-graded subalgebra.

### Syntax

SB.IsInSA(f: RINGELEM,S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL

### Description

This function takes a polynomial `f` and a subalgebra `S` and tests whether `f` is an element of `S` using truncated SAGBI bases.

@param

`f`A polynomial@param

`S`A standard-graded subalgebra, i.e. of type`TAGGED("$apcocoa/sagbi.Subalgebra")`and the generators of f are homogeneous polynomials with respect to the standard grading.@return

`true`if`f`is an element of`S`and`false`if not.

#### Example

Use R ::= QQ[x,y,z]; S := SB.Subalgebra(R,[x^2,y+z]); f := x^4 +2*x^3*y +x^2*y^2 +x^2 +2*x*y +y^2; SB.IsInSA_SAGBI(f,S); -- true

### See also

Package sagbi/SB.IsInSubalgebra

Package sagbi/SB.IsInSubalgebra_SAGBI