# Difference between revisions of "Package sagbi/SB.IsInSA SAGBI"

From ApCoCoAWiki

Andraschko (talk | contribs) m (<em> --> <tt>) |
Andraschko (talk | contribs) (added see item) |
||

Line 27: | Line 27: | ||

<see>Package sagbi/SB.IsInSubalgebra</see> | <see>Package sagbi/SB.IsInSubalgebra</see> | ||

<see>Package sagbi/SB.IsInSubalgebra_SAGBI</see> | <see>Package sagbi/SB.IsInSubalgebra_SAGBI</see> | ||

+ | <see>Package sagbi/SB.IsInToricRing</see> | ||

</seealso> | </seealso> | ||

## Revision as of 12:13, 26 October 2020

This article is about a function from ApCoCoA-2. |

## SB.IsInSA_SAGBI

This function tests whether a polynomial is in a given standard-graded subalgebra.

### Syntax

SB.IsInSA(f: RINGELEM,S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL

### Description

This function takes a polynomial `f` and a subalgebra `S` and tests whether `f` is an element of `S` using truncated SAGBI bases.

@param

`f`A polynomial@param

`S`A standard-graded subalgebra, i.e. of type`TAGGED("$apcocoa/sagbi.Subalgebra")`and the generators of f are homogeneous polynomials with respect to the standard grading.@return

`true`if`f`is an element of`S`and`false`if not.

#### Example

Use R ::= QQ[x,y,z]; S := SB.Subalgebra(R,[x^2,y+z]); f := x^4 +2*x^3*y +x^2*y^2 +x^2 +2*x*y +y^2; SB.IsInSA_SAGBI(f,S); -- true

### See also

Package sagbi/SB.IsInSubalgebra

Package sagbi/SB.IsInSubalgebra_SAGBI

Package sagbi/SB.IsInToricRing