Difference between revisions of "Group Examples"

From ApCoCoAWiki
Line 3: Line 3:
 
==== <div id="Baumslag_groups">Baumslag groups</div> ====
 
==== <div id="Baumslag_groups">Baumslag groups</div> ====
 
Baumslag-Solitar groups are examples of two-generator one-relator groups.
 
Baumslag-Solitar groups are examples of two-generator one-relator groups.
  BS(m,n) = <a,b | ba^m = a^nb>  
+
  BS(m,n) = <a,b | ba^{m} = a^{n}b>  
 
where m, n are natural numbers. [[:ApCoCoA:Symbolic data Computations#Baumslag_groups|Computations of Baumslag groups]].
 
where m, n are natural numbers. [[:ApCoCoA:Symbolic data Computations#Baumslag_groups|Computations of Baumslag groups]].
  
Line 9: Line 9:
  
 
Another variation of the Baumslag groups, called the Baumslag-Gersten group, is defined by:
 
Another variation of the Baumslag groups, called the Baumslag-Gersten group, is defined by:
  BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^2>
+
  BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^{2}>
  
  
 
==== <div id="Braid_groups">Braid groups</div> ====
 
==== <div id="Braid_groups">Braid groups</div> ====
 
For a natural number n, the following is a presentation of the Braid group with n-1 generators and n strands.  
 
For a natural number n, the following is a presentation of the Braid group with n-1 generators and n strands.  
  B(n) = <g_1,...,g_(n - 1) | g_ig_j = g_jg_i for |i-j| >= 2, g_ig_{i+1}g_i = g_{i+1}g_ig_{i+1} for 1 <= i <= n-2>
+
  B(n) = <g_{1},...,g_{n-1} | g_{i}g_{j} = g_{j}g_{i} for |i-j| >= 2, g_{i}g_{i+1}g_{i} = g_{i+1}g_{i}g_{i+1} for 1 <= i <= n-2>
 
(Reference: W. Magnus,  Braid groups: A survey, Proceedings of the Second International Conference on the Theory of Groups, Canberra, Australia, 1973, pp. 463-487.)
 
(Reference: W. Magnus,  Braid groups: A survey, Proceedings of the Second International Conference on the Theory of Groups, Canberra, Australia, 1973, pp. 463-487.)
  
  
 
==== <div id="Cyclic_groups">Cyclic groups</div> ====
 
==== <div id="Cyclic_groups">Cyclic groups</div> ====
  C(n) = <a | a^n = 1>
+
  C(n) = <a | a^{n} = 1>
  
  
 
==== <div id="Dicyclic_groups">Dicyclic groups</div> ====
 
==== <div id="Dicyclic_groups">Dicyclic groups</div> ====
  Dic(n) = <a,b | a^{2n} = 1, a^n = b^2, bab^{-1} = a^{-1}>
+
  Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, bab^{-1} = a^{-1}>
  
  
 
==== <div id="Dihedral_groups">Dihedral groups</div> ====
 
==== <div id="Dihedral_groups">Dihedral groups</div> ====
 
The dihedral group of degree n is the group of symmetries of a regular polynom. This non-abelian group consists of 2n elements, n rotations and n reflections. Let r be a single rotation and s be an arbitrary reflection. Then the group has the following representation
 
The dihedral group of degree n is the group of symmetries of a regular polynom. This non-abelian group consists of 2n elements, n rotations and n reflections. Let r be a single rotation and s be an arbitrary reflection. Then the group has the following representation
  Dih(n) = <r,s | r^n = s^2 = (rs)^2 = 1>
+
  Dih(n) = <r,s | r^{n} = s^{2} = (rs)^{2} = 1>
  
  
Line 37: Line 37:
  
 
==== <div id="Free_abelian_group">Free abelian groups</div> ====
 
==== <div id="Free_abelian_group">Free abelian groups</div> ====
  Z(n) = <a_1,...,a_n | [a_i,a_j] = 1 for all i,j>
+
  Z(n) = <a_{1},...,a_{n} | [a_{i},a_{j}] = 1 for all i,j>
  
  
 
==== <div id="Free_groups">Free groups</div> ====
 
==== <div id="Free_groups">Free groups</div> ====
  F(n) = <a_1,...,a_n | a_ia_i^{-1} = a_i^{-1}a_i = 1>
+
  F(n) = <a_{1},...,a_{n} | a_{i}a_{i}^{-1} = a_{i}^{-1}a_{i} = 1>
  
  
 
==== <div id="Fibonacci_groups">Fibonacci groups</div> ====
 
==== <div id="Fibonacci_groups">Fibonacci groups</div> ====
 
Fibonacci groups are related to the inductive definition of the Fibonacci numbers f_{i} + f_{i+1} = f_{i+2} where f_{1} = f_{2} = 1. These groups have the following finite presentation:
 
Fibonacci groups are related to the inductive definition of the Fibonacci numbers f_{i} + f_{i+1} = f_{i+2} where f_{1} = f_{2} = 1. These groups have the following finite presentation:
  F(2,m) = <x_1,...,x_m | x_{i}x_{i+1} = x_{i+2}>
+
  F(2,m) = <x_{1},...,x_{m} | x_{i}x_{i+1} = x_{i+2}>
  
  
 
==== <div id="Heisenberg_groups">Heisenberg groups</div> ====
 
==== <div id="Heisenberg_groups">Heisenberg groups</div> ====
  H(2k+1) = <a_1,...,a_k,b_1,...,b_k,c | [a_i,b_i] = c, [a_i,c] = [b_i,c], [a_i,b_j] = 1 for all i != j>
+
  H(2k+1) = <a_{1},...,a_{k},b_{1},...,b_{k},c | [a_{i},b_{i}] = c, [a_{i},c] = [b_{i},c], [a_{i},b_{j}] = 1 for all i != j>
  
  
 
==== <div id="Higman_group">Higman group</div> ====
 
==== <div id="Higman_group">Higman group</div> ====
  H = <a,b,c,d | a^{-1}ba = b^2, b^{-1}cb = c^2, c^{-1}dc = d^2, d^{-1}ad = a^2>
+
  H = <a,b,c,d | a^{-1}ba = b^{2}, b^{-1}cb = c^{2}, c^{-1}dc = d^{2}, d^{-1}ad = a^{2}>
  
  
Line 63: Line 63:
  
 
==== <div id="Thompson_group">Thompson group</div> ====
 
==== <div id="Thompson_group">Thompson group</div> ====
  T = <a,b | [ab^{-1},a^{-1}ba] = [ab^{-1},a^{-2}ba^2] = 1>
+
  T = <a,b | [ab^{-1},a^{-1}ba] = [ab^{-1},a^{-2}ba^{2}] = 1>
   = <x_0,x_1,x_2,... | x_k^{-1}x_nx_k = x_{n+1} for all k < n> with a = x_0, x_n = a^{1-n}ba^{n-1}
+
   = <x_{0},x_{1},x_{2},... | x_{k}^{-1}x_{n}x_{k} = x_{n+1} for all k < n> with a = x_{0}, x_{n} = a^{1-n}ba^{n-1}
  
  
 
==== <div id="Triangle_groups">Triangle groups</div> ====
 
==== <div id="Triangle_groups">Triangle groups</div> ====
 
The triangle groups describe the application of reflections across the sides of a triangle (A,B,C) with the three reflections a,b,c and can be represented as the following:
 
The triangle groups describe the application of reflections across the sides of a triangle (A,B,C) with the three reflections a,b,c and can be represented as the following:
  Triangle(l,m,n) = {a,b,c | a^2 = b^2 = c^2 = (ab)^l = (bc)^m = (ca)^n = 1}
+
  Triangle(l,m,n) = {a,b,c | a^{2} = b^{2} = c^{2} = (ab)^{l} = (bc)^{m} = (ca)^{n} = 1}
 
There are three different cases depending on the choice of the parameters l,m,n:
 
There are three different cases depending on the choice of the parameters l,m,n:
 
  The euclidian case:    1/l + 1/m + 1/n = 1
 
  The euclidian case:    1/l + 1/m + 1/n = 1

Revision as of 16:04, 1 July 2013

Non-abelian Groups

Baumslag groups

Baumslag-Solitar groups are examples of two-generator one-relator groups.

BS(m,n) = <a,b | ba^{m} = a^{n}b> 

where m, n are natural numbers. Computations of Baumslag groups.

(Reference: G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. , 689 (1962) pp. 199–201.)

Another variation of the Baumslag groups, called the Baumslag-Gersten group, is defined by:

BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^{2}>


Braid groups

For a natural number n, the following is a presentation of the Braid group with n-1 generators and n strands.

B(n) = <g_{1},...,g_{n-1} | g_{i}g_{j} = g_{j}g_{i} for |i-j| >= 2, g_{i}g_{i+1}g_{i} = g_{i+1}g_{i}g_{i+1} for 1 <= i <= n-2>

(Reference: W. Magnus, Braid groups: A survey, Proceedings of the Second International Conference on the Theory of Groups, Canberra, Australia, 1973, pp. 463-487.)


Cyclic groups

C(n) = <a | a^{n} = 1>


Dicyclic groups

Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, bab^{-1} = a^{-1}>


Dihedral groups

The dihedral group of degree n is the group of symmetries of a regular polynom. This non-abelian group consists of 2n elements, n rotations and n reflections. Let r be a single rotation and s be an arbitrary reflection. Then the group has the following representation

Dih(n) = <r,s | r^{n} = s^{2} = (rs)^{2} = 1>


von Dyck groups

The von Dyck groups are sometimes referred to as ordinary triangle groups and are subgroups of index 2 in Triangle(l, m, n) generated by words of even length in the generators a, b, c. A specific representation is given for x = ab, y = ca, yx = cb:

D(l,m,n) = <x,y | x^{l} = y^{m} = (xy)^{n} = 1>


Free abelian groups

Z(n) = <a_{1},...,a_{n} | [a_{i},a_{j}] = 1 for all i,j>


Free groups

F(n) = <a_{1},...,a_{n} | a_{i}a_{i}^{-1} = a_{i}^{-1}a_{i} = 1>


Fibonacci groups

Fibonacci groups are related to the inductive definition of the Fibonacci numbers f_{i} + f_{i+1} = f_{i+2} where f_{1} = f_{2} = 1. These groups have the following finite presentation:

F(2,m) = <x_{1},...,x_{m} | x_{i}x_{i+1} = x_{i+2}>


Heisenberg groups

H(2k+1) = <a_{1},...,a_{k},b_{1},...,b_{k},c | [a_{i},b_{i}] = c, [a_{i},c] = [b_{i},c], [a_{i},b_{j}] = 1 for all i != j>


Higman group

H = <a,b,c,d | a^{-1}ba = b^{2}, b^{-1}cb = c^{2}, c^{-1}dc = d^{2}, d^{-1}ad = a^{2}>


Ordinary tetrahedon groups

The Ordinary tetrahedon groups are groups with the following presentation where e_i >= 2 and f_i >= 2 for all i.

G(e_1,e_2,e_3,f_1,f_2,f_3) = <x,y,z | x^{e_1} = y^{e_2} = z^{e_3} = (xy^{-1})^{f_1} = (yz^{-1})^{f_2} = (zx^{-1})^{f_3} = 1>


Thompson group

T = <a,b | [ab^{-1},a^{-1}ba] = [ab^{-1},a^{-2}ba^{2}] = 1>
  = <x_{0},x_{1},x_{2},... | x_{k}^{-1}x_{n}x_{k} = x_{n+1} for all k < n> with a = x_{0}, x_{n} = a^{1-n}ba^{n-1}


Triangle groups

The triangle groups describe the application of reflections across the sides of a triangle (A,B,C) with the three reflections a,b,c and can be represented as the following:

Triangle(l,m,n) = {a,b,c | a^{2} = b^{2} = c^{2} = (ab)^{l} = (bc)^{m} = (ca)^{n} = 1}

There are three different cases depending on the choice of the parameters l,m,n:

The euclidian case:    1/l + 1/m + 1/n = 1
The spherical case:    1/l + 1/m + 1/n > 1
The hyperbolical case: 1/l + 1/m + 1/n < 1


Old Data at Ftp

ftp://apcocoa.org/pub/symbolic_data