From CoCoAWiki
Jump to: navigation, search
   <short_description>saturation of ideals</short_description>

This function returns the saturation of I with respect to J: the ideal of polynomials F such that F*G is in I for all G in <formula>J^d</formula> for some positive integer d. <par/> The coefficient ring must be a field.


 Use R ::= Q[x,y,z];
 I := Ideal(x-z, y-2z);
 J := Ideal(x-2z, y-z);
 K := Intersection(I, J); -- ideal of two points in the
                          -- projective plane
 L := Intersection(K, Ideal(x,y,z)^3); -- add an irrelevant component

H(0) = 1 H(1) = 3 H(2) = 6 H(t) = 2 for t >= 3

 Saturation(L, Ideal(x,y,z)) = K; -- saturating gets rid of the
                                  -- irrelevant component




Saturation(I:IDEAL,J:IDEAL):IDEAL </syntax>

   <see>GBasis5, and more</see>