CoCoA:Minimalized
From ApCoCoAWiki
Minimalized
remove redundant generators
Description
In the inhomogeneous case it returns the ideal or module
obtained by removing redundant generators from E.
In the homogeneous case, it obtains a generating set with smallest
possible cardinality. The minimal set of generators found by CoCoA is
not necessarily a subset of the given generators. It returns the minimalized ideal or module.
The coefficient ring is assumed to be a field.
The similar function <ttref>Minimalize</ttref> performs the same
operation, but modifies the argument and returns NULL.
Example
Use R ::= Q[x,y,z]; I := Ideal(x-y^2,z-y^5,x^5-z^2); I; Ideal(-y^2 + x, -y^5 + z, x^5 - z^2) ------------------------------- Minimalized(I); Ideal(-y^2 + x, -y^5 + z) ------------------------------- I; Ideal(-y^2 + x, -y^5 + z, x^5 - z^2) ------------------------------- Minimalize(I); I; Ideal(-y^2 + x, -y^5 + z) ------------------------------- J := Ideal(x, x-y, y-z, z^2); Minimalized(J); Ideal(y - z, x - z, z) -------------------------------
Syntax
Minimalized(E:IDEAL):IDEAL Minimalized(E:MODULE):MODULE where X is a variable containing an ideal or module.
<type>ideal</type> <type>module</type>