CoCoA:IsHomog
From ApCoCoAWiki
IsHomog
test whether given polynomials are homogeneous
Description
The first form of this function returns TRUE if F is homogeneous.
The second form returns TRUE if every element of L is homogeneous.
Otherwise, they return FALSE. The third form returns TRUE if the ideal/module can be generated by homogeneous elements, and FALSE if not. Homogeneity is with respect to the first row of the weights matrix.
Example
Use R ::= Q[x,y]; IsHomog(x^2-xy); TRUE ------------------------------- IsHomog(x-y^2); FALSE ------------------------------- IsHomog([x^2-xy,x-y^2]); FALSE ------------------------------ Use R ::= Q[x,y],Weights(Mat([[2,3],[1,2]])); IsHomog(x^3y^2+y^4); TRUE ------------------------------- Use R ::= Q[x,y]; IsHomog(Ideal(x^2+y,y)); TRUE -------------------------------
Syntax
IsHomog(F:POLY or VECTOR):BOOL IsHomog(L:LIST):BOOL IsHomog(I:IDEAL or MODULE):BOOL
<type>boolean</type> <type>polynomial</type>