CoCoA:IntersectionList
From ApCoCoAWiki
IntersectionList
intersect lists, ideals, or modules
Description
The function IntersectionList applies the function Intersection to
the elements of a list, i.e., IntersectionList([X_1,...,X_n]) is the
same as Intersection(X_1,...,X_n).
The coefficient ring must be a field.
NOTE: In order to compute the intersection of inhomogeneous ideals, it
may be faster to use the function HIntersectionList.
To compute the intersection of ideals corresponding to
zero-dimensional schemes, see the commands <ttref>GBM</ttref> and <ttref>HGBM</ttref>.
Example
Use R ::= Q[x,y,z]; Points := [[0,0],[1,0],[0,1],[1,1]]; -- a list of points in the plane IntersectionList([ Ideal(x-P[1]z, y-P[2]z) | P In Points]); Ideal(y^2 - yz, x^2 - xz) ------------------------------- Intersection([<quotes>a</quotes>,<quotes>b</quotes>,<quotes>c</quotes>],[<quotes>b</quotes>,<quotes>c</quotes>,<quotes>d</quotes>]); [<quotes>b</quotes>, <quotes>c</quotes>] ------------------------------- IntersectionList([Ideal(x,y),Ideal(y^2,z)]); Ideal(yz, xz, y^2) ------------------------------- It = Intersection(Ideal(x,y),Ideal(y^2,z)); TRUE -------------------------------
Syntax
IntersectionList(L:LIST of LIST):LIST IntersectionList(L:LIST of IDEAL):IDEAL IntersectionList(L:LIST of MODULE):MODULE
<type>groebner</type> <type>groebner-basic</type> <type>ideal</type> <type>list</type> <type>module</type>