CoCoA:Intersection
From ApCoCoAWiki
Intersection
intersect lists, ideals, or modules
Description
The function Intersection returns the intersection of E_1,...,E_n.
In the case where the E_i's are lists, it returns the elements common
to all of the lists.
The coefficient ring must be a field.
NOTE: In order to compute the intersection of inhomogeneous ideals, it
may be faster to use the function HIntersection. To compute the
intersection of ideals corresponding to zero-dimensional schemes, see the commands <ttref>GBM</ttref> and <ttref>HGBM</ttref>.
Example
Use R ::= Q[x,y,z]; Points := [[0,0],[1,0],[0,1],[1,1]]; -- a list of points in the plane I := Ideal(x,y); -- the ideal for the first point Foreach P In Points Do I := Intersection(I,Ideal(x-P[1]z,y-P[2]z)); EndForeach; I; -- the ideal for (the projective closure of) Points Ideal(y^2 - yz, x^2 - xz) ------------------------------- Intersection([<quotes>a</quotes>,<quotes>b</quotes>,<quotes>c</quotes>],[<quotes>b</quotes>,<quotes>c</quotes>,<quotes>d</quotes>]); [<quotes>b</quotes>, <quotes>c</quotes>] ------------------------------- It = Intersection(Ideal(x,y),Ideal(y^2,z)); TRUE -------------------------------
Syntax
Intersection(E_1:LIST,....,E_n:LIST):LIST Intersection(E_1:IDEAL,...,E_n:IDEAL):IDEAL Intersection(E_1:MODULE,....,E_n:MODULE):MODULE
<type>groebner</type> <type>groebner-basic</type> <type>ideal</type> <type>list</type> <type>module</type> <type>cocoaserver</type>