CoCoA:HilbertSeries

From ApCoCoAWiki

HilbertSeries

the Hilbert-Poincare series

Description

This function computes the Hilbert-Poincare series of M.

The input, M, must be homogeneous (with respect to the first row of

the weights matrix). In the standard case, i.e. the weights of all indeterminates are 1, the result is simplified so that the power appearing in the denominator is the dimension of M.

The function <ttref>Poincare</ttref> is exacly the same as <ttref>HilbertSeries</ttref>.

NOTES:

(i) the coefficient ring must be a field.

(ii) these functions produce tagged objects: they cannot safely be

    (non-)equality to other values.

For more information, see the article: A.M. Bigatti, Computations of Hilbert-Poincare Series, J. Pure Appl. Algebra, 119/3 (1997), 237--253.

Example

  Use R ::= Q[t,x,y,z];
  HilbertSeries(R/Ideal(0));
(1) / (1-t)^4
-------------------------------
  Q := R/Ideal(t^2,x,y^3);  Poincare(Q);
(1 + 2t + 2t^2 + t^3) / (1-t)
-------------------------------
  Poincare(R^2/Module([x^2,y],[z,y]));
(2 + t) / (1-t)^3
-------------------------------
  Use R ::= Q[t,x,y,z], Weights([1,2,3,4]);
  Poincare(R/Ideal(t^2,x,y^3));
---  Non Simplified Pseries  ---
(1-2t^2 + t^4 - t^9 + 2t^11 - t^13) / ( (1-t) (1-t^2) (1-t^3) (1-t^4) )
-------------------------------
  Use R ::= Q[t,x,y,z], Weights(Mat([[1,2,3,4],[0,0,5,8]]));
  Poincare(R/Ideal(t^2,x,y^3));
---  Non Simplified Pseries  ---
( - t^13x^15 + 2t^11x^15 - t^9x^15 + t^4-2t^2 + 1) / ( (1-t) (1-t^2) (1-t^3x^5) (1-t^4x^8) )
-------------------------------

Syntax

HilbertSeries(M:RING or TAGGED(<quotes>Quotient</quotes>)):TAGGED(<quotes>$hp.PSeries</quotes>)

Dim

Hilbert

HVector

Multiplicity

HilbertSeriesShifts

HilbertSeriesMultiDeg

Weights Modifier

WeightsMatrix

   <type>groebner</type>
   <type>groebner-basic</type>
   <type>hilbert</type>
   <type>quotient</type>
   <type>ring</type>