CoCoA:HilbertSeries
From ApCoCoAWiki
HilbertSeries
the Hilbert-Poincare series
Description
This function computes the Hilbert-Poincare series of M.
The input, M, must be homogeneous (with respect to the first row of
the weights matrix). In the standard case, i.e. the weights of all indeterminates are 1, the result is simplified so that the power appearing in the denominator is the dimension of M.
The function <ttref>Poincare</ttref> is exacly the same as <ttref>HilbertSeries</ttref>.
NOTES:
(i) the coefficient ring must be a field.
(ii) these functions produce tagged objects: they cannot safely be
(non-)equality to other values.
For more information, see the article: A.M. Bigatti, Computations of Hilbert-Poincare Series, J. Pure Appl. Algebra, 119/3 (1997), 237--253.
Example
Use R ::= Q[t,x,y,z]; HilbertSeries(R/Ideal(0)); (1) / (1-t)^4 ------------------------------- Q := R/Ideal(t^2,x,y^3); Poincare(Q); (1 + 2t + 2t^2 + t^3) / (1-t) ------------------------------- Poincare(R^2/Module([x^2,y],[z,y])); (2 + t) / (1-t)^3 ------------------------------- Use R ::= Q[t,x,y,z], Weights([1,2,3,4]); Poincare(R/Ideal(t^2,x,y^3)); --- Non Simplified Pseries --- (1-2t^2 + t^4 - t^9 + 2t^11 - t^13) / ( (1-t) (1-t^2) (1-t^3) (1-t^4) ) ------------------------------- Use R ::= Q[t,x,y,z], Weights(Mat([[1,2,3,4],[0,0,5,8]])); Poincare(R/Ideal(t^2,x,y^3)); --- Non Simplified Pseries --- ( - t^13x^15 + 2t^11x^15 - t^9x^15 + t^4-2t^2 + 1) / ( (1-t) (1-t^2) (1-t^3x^5) (1-t^4x^8) ) -------------------------------
Syntax
HilbertSeries(M:RING or TAGGED(<quotes>Quotient</quotes>)):TAGGED(<quotes>$hp.PSeries</quotes>)
<type>groebner</type> <type>groebner-basic</type> <type>hilbert</type> <type>quotient</type> <type>ring</type>