CoCoA:HilbertPoly
From ApCoCoAWiki
HilbertPoly
the Hilbert polynomial
Description
This function returns the Hilbert polynomial for R as a polynomial in
the standard CoCoA ring Qt (= Q[t]).
The weights of the indeterminates of R must all be 1, and the
coefficient ring must be a field.
If the input is not homogeneous, the Hilbert polynomial of the
corresponding leading term (initial) ideal or module is calculated.
For the Hilbert *function*, see <ttref>Hilbert</ttref>.
Example
Use R ::= Q[w,x,y,z]; I := Ideal(z^2-xy,xz^2+w^3); Hilbert(R/I); H(0) = 1 H(1) = 4 H(t) = 6t-3 for t >= 2 ------------------------------- F := HilbertPoly(R/I); F; -- a polynomial in the ring Qt Qt :: 6t-3 ------------------------------- Subst(F,Qt::t,3); Qt :: 15 -------------------------------
Syntax
Hilbert(R:RING or TAGGED(<quotes>Quotient</quotes>)):POLY in the ring Qt.
<type>groebner</type> <type>groebner-basic</type> <type>hilbert</type> <type>quotient</type> <type>ring</type>