CoCoA:HGBM
From ApCoCoAWiki
HGBM
intersection of ideals for zero-dimensional schemes
Description
This function computes the intersection of ideals corresponding to
zero-dimensional schemes: <ttref>GBM</ttref> is for affine schemes, and HGBM for
projective schemes. The list L must be a list of ideals. The function <ttref>IntersectionList</ttref> should be used for computing the intersection of a collection of general ideals.
The name GBM comes from the name of the algorithm used: Generalized
Buchberger-Moeller. The prefix H comes from Homogeneous since ideals
of projective schemes are necessarily homogeneous.
Example
Use Q[x[0..2]]; I1:=IdealOfProjectivePoints([[1,2,1], [0,1,0]]); -- simple projective scheme I2:=IdealOfProjectivePoints([[1,1,1], [2,0,1]])^2; -- another projective scheme HGBM([I1,I2]); -- intersect the ideals Ideal(x[0]^3 - x[0]x[1]^2 - 5x[0]^2x[2] + x[1]^2x[2] + 8x[0]x[2]^2 - 4x[2]^3, x[0]^2x[1] + x[0]x[1]^2 - 3x[0]x[1]x[2] - x[1]^2x[2] + 2x[1]x[2]^2, x[0]x[1]^3 - 2x[0]^2x[2]^2 - 5x[0]x[1]x[2]^2 - 4x[1]^2x[2]^2 + 8x[0]x[2]^3 + 10x[1]x[2]^3 - 8x[2]^4, x[0]x[1]^2x[2] + x[1]^3x[2] - 2x[0]^2x[2]^2 - 5x[0]x[1]x[2]^2 - 5x[1]^2x[2]^2 + 8x[0]x[2]^3 + 10x[1]x[2]^3 - 8x[2]^4, x[1]^4x[2] - 2x[1]^3x[2]^2 - 4x[0]^2x[2]^3 - 8x[0]x[1]x[2]^3 - 3x[1]^2x[2]^3 + 16x[0]x[2]^4 + 16x[1]x[2]^4 - 16x[2]^5) -------------------------------
Syntax
HGBM(L:LIST):IDEAL
Finite Point Sets: Buchberger-Moeller
IdealAndSeparatorsOfProjectivePoints
<type>groebner</type> <type>ideal</type> <type>list</type> <type>points</type>