CoCoA:Ext
Ext
presentation Ext modules as quotients of free modules
Description
In the first form the function computes the I-th Ext module of M and N.
It returns a presentation of <formula>Ext^I_R(M,N)</formula> as a quotient of a free module.
IMPORTANT: the only exception to the type of M or N (or even of the
output) is when they are either a zero module or a free module.
In these cases their type is indeed MOD.
It computes Ext via a presentation of the quotient of the two modules
<formula>Ker(Phi*_I)</formula> and <formula>Im(Phi*_{I-1})</formula>, where - <formula>Phi_I</formula> is the I-th map in the free resolution of M - <formula>Phi*_I</formula> is the map <formula>Hom(Phi_I,N)</formula> in the dual of the free resolution.
Main differences with the previous version include:
- SHIFTS have been removed, consequently only standard homogeneous
modules and quotients are supported
- as a consequence of 1), the type Tagged("Shifted") has been
removed. Ext will just be a Tagged("Quotient")
- The former functions Presentation(), HomPresentation() and
KerPresentation() have been removed
- The algorithm uses Res() to compute the maps needed, and not
SyzOfGens anylonger, believed to cause troubles
- The function Ext always has THREE variables, see syntax...
In the second form the variable I is a LIST of nonnegative
integers. In this case the function Ext prints all the Ext modules corresponding to the integers in I. The output is of special type Tagged("$ext.ExtList") which is basically just the list of pairs <formula>{(J,Ext^J(M,N))|J in I}</formula> in which the first element is an integer of I and the second element is the correpsonding Ext module.
VERY IMPORTANT: CoCoA cannot accept the ring R as one of the inputs,
so if you want to calculate the module <formula>Ext^I_R(M,R)</formula> you need to type something like
Ext(I, M, Ideal(1));
or
Ext(I, M, R^1);
or
Ext(I, M, R/Ideal(0));
NOTE: The input is pretty flexible in terms of what you can use for M
and N. For example they can be zero modules or free modules. See some examples below.
Example
Use R ::= Q[x,y,z]; I := Ideal(x^5, y^3, z^2); Ideal(0) : (I); Ideal(0) ------------------------------- $hom.Hom(R^1/Module(I), R^1); -- from Hom package Module([[0]]) ------------------------------- Ext(0, R/I, R^1); --- all those things should be isomorphic Module([[0]]) ------------------------------- Ext(0..4, R/I, R/Ideal(0)); -- another way to define the ring R as a quotient Ext^0 = Module([[0]]) Ext^1 = Module([[0]]) Ext^2 = Module([[0]]) Ext^3 = R^1/Module([[x^5], [y^3], [z^2]]) Ext^4 = Module([[0]]) ------------------------------- N := Module([x^2,y], [x+z,0]); Ext(0..4, R/I, R^2/N); Ext^0 = Module([[0]]) Ext^1 = Module([[0]]) Ext^2 = R^2/Module([[0, x + z], [y, 0], [0, z^2], [z^2, 0], [0, y^3], [x^5, 0]]) Ext^3 = R^2/Module([[x + z, 0], [0, z^2], [z^2, 0], [y^3, 0], [0, x^5], [0, y]]) Ext^4 = Module([[0]]) -------------------------------
Since version 4.7.3 the output modules are presented minimally.
Syntax
Ext(I:INT, M:TAGGED(<coc_quotes>Quotient</coc_quotes>), Q:TAGGED(<coc_quotes>Quotient</coc_quotes>)): TAGGED(<coc_quotes>Quotient</coc_quotes>) Ext(I:LIST, M:TAGGED(<coc_quotes>Quotient</coc_quotes>), Q:TAGGED(<coc_quotes>Quotient</coc_quotes>)): TAGGED(<coc_quotes>$ext.ExtList</coc_quotes>)
<type>ideal</type> <type>module</type> <type>quotient</type>