CoCoA:EvalBinExp
From ApCoCoAWiki
EvalBinExp
binomial expansion functions
Description
The function <ttref>BinExp</ttref> computes the K-binomial
expansion of N, i.e., the unique expression
<verbatim>
N = Bin(N(K),K) + Bin(N(K-1),K-1) + ... + Bin(N(I),I)
</verbatim> where <formula>N(K) > ... > N(I) >= 1</formula>, for some I.
This function computes the sum of the binomial coefficients
appearing in the K-binomial expansion of N after replacing each
summand Bin(N(J),J) by Bin(N(J)+Up,J+Down). It is useful in generalizations of Macaulay's theorem characterizing Hilbert functions.
It is the same as <ttref>BinExp</ttref> with 4 arguments except it
takes a precomputed binomial expansion as an argument rather than N and K.
Example
BE := BinExp(13,4); BE; Bin(5,4) + Bin(4,3) + Bin(3,2) + Bin(1,1) ------------------------------- EvalBinExp(BE,1,1); 16 ------------------------------- BinExp(13,4,1,1); 16 -------------------------------
Syntax
EvalBinExp(B:TAGGED(<quotes>$binrepr.BinExp</quotes>),Up:INT,Down:INT):INT where N and K are positive integers, and Up and Down are integers.
<type>integer</type>