CoCoA:EquiIsoDec
From ApCoCoAWiki
EquiIsoDec
equidimensional isoradical decomposition
Description
This function computes an equidimensional isoradical decomposition of
I, i.e. a list of unmixed ideals <formula>I_1,...,I_k</formula> such that the radical of I
is the intersection of the radicals of <formula>I_1,...,I_k</formula>. Redundancies are possible.
NOTE: at the moment, this implementation works only if the coefficient
ring is the rationals or has large enough characteristic.
Example
Use R ::= Q[x,y,z]; I := Intersection(Ideal(x-1,y-1,z-1),Ideal(x-2,y-2)^2,Ideal(x)^3); H := EquiIsoDec(I); H; [Ideal(x), Ideal(z - 1, y - 1, x - 1), Ideal(xy - y^2 - 2x + 2y, x^2 - y^2 - 4x + 4y, y^2z - y^2 - 4yz + 4y + 4z - 4, y^3 - 5y^2 + 8y - 4, x - 2)] ------------------------------- T := [Radical(J)|J In H]; S := IntersectionList(T); Radical(I) = S; TRUE -------------------------------
Syntax
EquiIsoDec(I:IDEAL):LIST of IDEAL
<type>groebner</type> <type>ideal</type>