CoCoA:DivAlg
From ApCoCoAWiki
DivAlg
division algorithm
Description
This function performs the division algorithm on X with respect to L.
It returns a record with two fields: Quotients holding a list of
polynomials, and Remainder holding the remainder of X upon division by L.
Example
Use R ::= Q[x,y,z]; F := x^2y+xy^2+y^2; L := [xy-1,y^2-1]; DivAlg(F,[xy-1,y^2-1]); Record[Quotients = [x + y, 1], Remainder = x + y + 1] ------------------------------- D := It; D.Quotients; [x + y, 1] ------------------------------- D.Remainder; x + y + 1 ------------------------------- ScalarProduct(D.Quotients,L) + D.Remainder = F; TRUE ------------------------------- V := Vector(x^2+y^2+z^2,xyz); L := [Vector(x,y),Vector(y,z),Vector(z,x)]; DivAlg(V,L); Record[Quotients = [0, -z^2, yz], Remainder = Vector(x^2 + y^2 + z^2, z^3)] -------------------------------
Syntax
DivAlg(X:POLY,L:LIST of POLY):RECORD DivAlg(X:VECTOR,L:LIST of VECTOR):RECORD
<type>polynomial</type> <type>record</type> <type>vector</type>