CoCoA:BinExp
From ApCoCoAWiki
BinExp
binomial expansion
Description
This function computes the K-binomial expansion of N, i.e., the
unique expression
<verbatim>
N = Bin(N(K),K) + Bin(N(K-1),K-1) + ... + Bin(N(I),I)
</verbatim> where <formula>N(K) > ... > N(I) >= 1</formula>, for some I. The value returned is tagged for pretty printing.
It can also compute the sum of the binomial coefficients
appearing in the K-binomial expansion of N after replacing each
summand Bin(N(J),J) by Bin(N(J)+Up,J+Down). It is useful in generalizations of Macaulay's theorem characterizing Hilbert functions.
Example
BE := BinExp(13,4); BE; Bin(5,4) + Bin(4,3) + Bin(3,2) + Bin(1,1) ------------------------------- BinExp(13,4,1,1); 16 -------------------------------
Syntax
BinExp(N:INT,K:INT):TAGGED(<quotes>$binrepr.BinExp</quotes>) BinExp(N:INT,K:INT,Up:INT,Down:INT):INT where N and K are positive integers, and Up and Down are integers.
<type>integer</type>