ApCoCoA:Num.SubAVI

From CoCoAWiki

Num.SubAVI

Computes a border basis of an almost vanishing sub-ideal for a set of points and an ideal using the Num.AVI algorithm.

Syntax

Num.SubAVI(Points:MAT, Epsilon:RAT, Basis:LIST):Object Num.SubAVI(Points:MAT, Epsilon:RAT, Basis:LIST, Delta:RAT, NormalizeType:INT):Object

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command computes a border basis of an almost vanishing sub-ideal for a set of points and an ideal using the ApCoCoA:Num.AVI algorithm.
The current ring has to be a ring over the rational numbers with a standard-degree compatible term-ordering. Each row in the matrix Points represents one point, so the number of columns must equal the number of indeterminates in the current ring.

  • @param Points The points for which a border basis is computed.
  • @param Epsilon A positive rational number describing which singular values should be treated as 0 (bigger values for epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval (0,1). As a rule of thumb, Tau is the expected percentage of error on the input points.
  • @param Basis A homogeneous Groebner Basis in the current ring. This basis defines the ideal in which we compute the basis of the approximate vanishing ideal.
  • @return A list of two results. First the border basis as a list of polynomials, second the vector space basis of P/I as a list of terms.

The following parameters are optional:

  • @param Delta A positive rational number which describes the computing precision. In different steps, it is crucial, if a value is 0 or not. The algorithm assumes every value in [-Delta, Delta] to be 0. The default value for Delta is 0.00000000001.
  • @param NormalizeType A integer of the set {1,2,3,4}. The default value is 2. This parameter describes, if and where required the input points are normalized. If NormalizeType equals 1, each coordinate of a point is divided by the maximal absolute value of all coordinates of this point. This ensures that all coordinates of the points are within [-1,1]. With NormalizeType=2 no normalization is done at all. NormalizeType=3 shifts each coordinate to [-1,1], i.e. the minimal coordinate of a point is mapped to -1 and the maximal coordinate to 1, which describes a unique affine mapping. The last option is NormalizeType=4. In this case, each point is normalized by its euclidean norm.

Example


Use P::=QQ[x,y,z];

Points := Mat([[2/3,0,0],[0,1,0],[0,0,1/3]]);
R:=Num.SubAVI(Points, 0.1, [x]);
Dec(R[1],2);
R[2];

-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[1 x^2 -0.66 x , 1 xy , 1 xz ]
-------------------------------
[x]
-------------------------------

See also

ApCoCoA:Introduction to CoCoAServer

ApCoCoA:Num.AVI