ApCoCoA:CharP.GBasisF2048

From CoCoAWiki

CharP.GBasisF2048

Computing a Groebner Basis of a given ideal in F_2048.

Syntax

CharP.GBasisF2048(Ideal:IDEAL):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command computes a Groebner basis in the field F_2048 = (Z/(2))[x]/(x^11 +x^3 + x^5 +x + 1).

  • @param Ideal An Ideal in a Ring over Z, where the elements 0,...,2047 represent the elements of the field F_2048. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g. 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0. So the number 11 corresponds to the polynomial x^3 + x + 1.
  • @return A Groebner Basis of the given ideal.

Example


Use R::=QQ[x,y,z];
I:=Ideal(x-y^2,x^2+xy,y^3);
GBasis(I);

[x^2 + xy, -y^2 + x, -xy]
-------------------------------
Use Z::=ZZ[x,y,z];
-- WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong

-------------------------------
I:=Ideal(x-y^2,x^2+xy,y^3);
CharP.GBasisF2048(I);
-- WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[y^2 + 1205x, x^2, xy]
-------------------------------


See also

ApCoCoA:GBasis

ApCoCoA:Introduction to CoCoAServer

ApCoCoA:Introduction to Groebner Basis in CoCoA

ApCoCoA:CharP.GBasisF2

ApCoCoA:CharP.GBasisF4

ApCoCoA:CharP.GBasisF8

ApCoCoA:CharP.GBasisF16

ApCoCoA:CharP.GBasisF32

ApCoCoA:CharP.GBasisF64

ApCoCoA:CharP.GBasisF128

ApCoCoA:CharP.GBasisF256

ApCoCoA:CharP.GBasisF512

ApCoCoA:CharP.GBasisF1024

ApCoCoA:CharP.GBasisModSquares

ApCoCoA:Representation of finite fields