# Difference between revisions of "ApCoCoA:CharP.GBasisF16"

(work in progress.) |
(adding type cocoaserver) |
||

Line 29: | Line 29: | ||

</seealso> | </seealso> | ||

+ | <types> | ||

+ | <type>cocoaserver</type> | ||

+ | </types> | ||

<key>heldt</key> | <key>heldt</key> | ||

<key>char2.GBasisF16</key> | <key>char2.GBasisF16</key> | ||

<wiki-category>Package_char2</wiki-category> | <wiki-category>Package_char2</wiki-category> | ||

</command> | </command> |

## Revision as of 19:56, 12 March 2008

## Char2.GBasisF16

computing a gbasis of a given ideal in <formula>\mathbb{F}_{16}</formula>

### Syntax

$char2.GBasisF16(Ideal):List

### Description

This command computes a Groebner basis in the field <formula> \mathbb{F}_{16} = (/mathbb{Z}_{\setminus(2)} [x])_{\setminus(x^4 + x^3 +1)}</formula>. It uses the ApCoCoA Server and the ApCoCoALib's class RingF16.

The command's input is a an Ideal in a Ring over Z, where the elements 0,..., 15 represent the field's elements. Details on this representation can be found here. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g.

<formula> 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0</formula>

So the number <formula>11</formula> corresponds to the polynomial <formula>x^3 + x + 1</formula>.

### See also

ApCoCoA:char2.GBasisModSquares