# Difference between revisions of "ApCoCoA-1:Weyl.WMulByMonom"

From ApCoCoAWiki

(New page: <command> <title>Weyl.WMulByMonom</title> <short_description>Computes the product M*F of Weyl monomial M and a Weyl polynomial F in normal form.</short_description> <syntax> Weyl...) |
(Change Wiki-category) |
||

Line 7: | Line 7: | ||

<description> | <description> | ||

− | This method multiplies a Weyl monomial M with a polynomials F and returns | + | This method multiplies a Weyl monomial M with a polynomials F and returns M*F as a Weyl polynomial in normal form. |

<example> | <example> | ||

Line 32: | Line 32: | ||

</types> | </types> | ||

<key>weyl.wmulbymonom</key> | <key>weyl.wmulbymonom</key> | ||

− | <wiki-category> | + | <wiki-category>Package_weyl</wiki-category> |

</command> | </command> |

## Revision as of 13:28, 22 April 2009

## Weyl.WMulByMonom

Computes the product M*F of Weyl monomial M and a Weyl polynomial F in normal form.

### Syntax

Weyl.WMulByMonom(M:POLY,F:POLY):POLY

### Description

This method multiplies a Weyl monomial M with a polynomials F and returns M*F as a Weyl polynomial in normal form.

#### Example

A1::=QQ[x,d]; --Define appropriate ring Use A1; M:=x^3d^4; F:=x^3+d^3+3xd+5; Weyl.WMulByMonom(M,F); x^6d^4 + x^3d^7 + 3x^4d^5 + 12x^5d^3 + 17x^3d^4 + 36x^4d^2 + 24x^3d ------------------------------- Weyl.WMulByMonom(F,M); -- note the input ERROR: 1st parameter should be a Monomial! CONTEXT: Error("1st parameter should be a Monomial!") -------------------------------

**Note: ** Monomials and polynomials that are not in normal form should be first converted in to normal form using Weyl.WNormalForm(L), otherwise you may get unexpected results.

### See also