# Difference between revisions of "ApCoCoA-1:Weyl.WMulByMonom"

From ApCoCoAWiki

(Change Wiki-category) |
|||

Line 6: | Line 6: | ||

</syntax> | </syntax> | ||

<description> | <description> | ||

+ | This function multiplies a Weyl monomial M with a polynomials F and returns M*F as a Weyl polynomial in normal form. | ||

− | + | <itemize> | |

+ | <item>@param <em>M</em> A Weyl monomial.</item> | ||

+ | <item>@param <em>F</em> A Weyl polynomial.</item> | ||

+ | <item>@return The product M*F, a Weyl polynomial in normal form.</item> | ||

+ | </itemize> | ||

+ | |||

+ | <em>Note:</em> Monomials and polynomials that are not in normal form should be first converted into normal form using <ref>Weyl.WNormalForm</ref>, otherwise you may get unexpected results. | ||

<example> | <example> | ||

Line 21: | Line 28: | ||

------------------------------- | ------------------------------- | ||

</example> | </example> | ||

− | |||

− | |||

</description> | </description> | ||

<seealso> | <seealso> | ||

Line 30: | Line 35: | ||

<types> | <types> | ||

<type>cocoaserver</type> | <type>cocoaserver</type> | ||

+ | <type>poly</type> | ||

</types> | </types> | ||

<key>weyl.wmulbymonom</key> | <key>weyl.wmulbymonom</key> | ||

+ | <key>wmulbymonom</key> | ||

<wiki-category>Package_weyl</wiki-category> | <wiki-category>Package_weyl</wiki-category> | ||

</command> | </command> |

## Revision as of 12:32, 23 April 2009

## Weyl.WMulByMonom

Computes the product M*F of Weyl monomial M and a Weyl polynomial F in normal form.

### Syntax

Weyl.WMulByMonom(M:POLY,F:POLY):POLY

### Description

This function multiplies a Weyl monomial M with a polynomials F and returns M*F as a Weyl polynomial in normal form.

@param

*M*A Weyl monomial.@param

*F*A Weyl polynomial.@return The product M*F, a Weyl polynomial in normal form.

*Note:* Monomials and polynomials that are not in normal form should be first converted into normal form using Weyl.WNormalForm, otherwise you may get unexpected results.

#### Example

A1::=QQ[x,d]; --Define appropriate ring Use A1; M:=x^3d^4; F:=x^3+d^3+3xd+5; Weyl.WMulByMonom(M,F); x^6d^4 + x^3d^7 + 3x^4d^5 + 12x^5d^3 + 17x^3d^4 + 36x^4d^2 + 24x^3d ------------------------------- Weyl.WMulByMonom(F,M); -- note the input ERROR: 1st parameter should be a Monomial! CONTEXT: Error("1st parameter should be a Monomial!") -------------------------------

### See also