ApCoCoA-1:Weyl.WMul

Weyl.WGB

Computes the Groebner basis of an ideal I in Weyl algebra $A_{n}$ , using corresponding

implementation in CoCoALib.

Weyl.WGB(I):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use

it/them.

This function computes a Groebner Basis for an Ideal $I=(f_{1},f_{2},...,f_{r})$ where every generator $f_{i}$ should be a Weyl polynomial in Normal form.

Example

A1::=QQ[x,d];	--Define appropraite ring
Use A1;
I:=Ideal(x,d);  -- Now start ApCoCoA server for executing next command
Weyl.WeylGB(I);
-- CoCoAServer: computing Cpu Time = 0
-------------------------------

-------------------------------
Note that Groebner basis you obtained is minimal.
A2::=QQ[x[1..2],y[1..2]];
Use A2;
I1:=Ideal(x^7,y^7);
Weyl.WGB(I1);
-- CoCoAServer: computing Cpu Time = 0.094
-------------------------------

-------------------------------

Example

W3::=ZZ/(7)[x[1..3],d[1..3]];
Use W3;
I2:=Ideal(x^7,d^7);  --is a 2-sided ideal in W3
Weyl.WGB(I2);   --ApCoCOAServer should be running
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[x^7, d^7]
-------------------------------

I3:=Ideal(x^3d,x*d^2);

Weyl.WGB(I3);
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[x^2d, xd^2 + 2d, x^3d^2 + x^2xdd + xxd, x^3d, xd^2]
-------------------------------