# Difference between revisions of "ApCoCoA-1:SB.ReducedSagbi"

From ApCoCoAWiki

(New page: <command> <title>SB.ReducedSagbi</title> <short_description>Computes the finite reduced SAGBI-basis of a subalgebra if existing.</short_description> <syntax> SB.ReducedSagbi(G:LIST ...) |
|||

Line 8: | Line 8: | ||

<description> | <description> | ||

If a finite SAGBI-basis of the subalgebra <tt>S</tt> generated by <tt>G</tt> is existing, this function computes the reduced SAGBI-basis of <tt>S</tt>. Then a list of polynomials is returned which form the reduced SAGBI-basis of <tt>S</tt>, i.e. these polynomials fulfill the conditions of a reduced SAGIB-basis. If no finite SAGBI-basis is existing the computation will be interrupted by an error message. | If a finite SAGBI-basis of the subalgebra <tt>S</tt> generated by <tt>G</tt> is existing, this function computes the reduced SAGBI-basis of <tt>S</tt>. Then a list of polynomials is returned which form the reduced SAGBI-basis of <tt>S</tt>, i.e. these polynomials fulfill the conditions of a reduced SAGIB-basis. If no finite SAGBI-basis is existing the computation will be interrupted by an error message. | ||

+ | <par/> | ||

+ | <em>Important:</em> This functions works only, if a finite SAGBI-basis of <tt>S</tt> is existing! | ||

<itemize> | <itemize> |

## Revision as of 11:14, 21 May 2010

## SB.ReducedSagbi

Computes the finite reduced SAGBI-basis of a subalgebra if existing.

### Syntax

SB.ReducedSagbi(G:LIST of POLY):LIST of POLY

### Description

If a finite SAGBI-basis of the subalgebra `S` generated by `G` is existing, this function computes the reduced SAGBI-basis of `S`. Then a list of polynomials is returned which form the reduced SAGBI-basis of `S`, i.e. these polynomials fulfill the conditions of a reduced SAGIB-basis. If no finite SAGBI-basis is existing the computation will be interrupted by an error message.

*Important:* This functions works only, if a finite SAGBI-basis of `S` is existing!

@param

*G*A list of polynomials which generates a subalgebra.@return If no error will occur, a list of polynomials which form a reduced SAGBI-basis of the given subalgebra.

#### Example

Use R::=QQ[x,y]; G:=[x-y,x+y]; SB.Sagbi(G); SB.ReducedSagbi(G); ------------------------------------------------------- -- output: -- a SAGBI-basis of K[G] [ x - y, x + y, y] ------------------------------- -- the reduced SAGBI-basis of K[G] [ x, y] ------------------------------- -- Done. -------------------------------

#### Example

Use R::=QQ[x[1..6]]; G:=[-x[4] - x[6], -x[1], x[2]^2 + x[3]^2, -4x[4]^2 - 5/2x[5]^2 + 2x[4]x[6] - 4x[6]^2, -2x[2]x[3]x[4] + x[2]^2x[5] - x[3]^2x[5] + 2x[2]x[3]x[6], -x[2]^2x[4] + x[3]^2x[4] - 2x[2]x[3]x[5] + x[2]^2x[6] - x[3]^2x[6]]; SB.Sagbi(G); SB.ReducedSagbi(G); ------------------------------------------------------- -- output: -- a SAGBI-basis of K[G] [ x[4] + x[6], x[1], x[2]^2 + x[3]^2, x[4]^2 + 5/8x[5]^2 - 1/2x[4]x[6] + x[6]^2, x[2]x[3]x[4] - 1/2x[2]^2x[5] + 1/2x[3]^2x[5] - x[2]x[3]x[6], x[2]^2x[4] - x[3]^2x[4] + 2x[2]x[3]x[5] - x[2]^2x[6] + x[3]^2x[6], x[5]^2 - 4x[4]x[6], x[3]^2x[4] - x[2]x[3]x[5] + x[2]^2x[6]] ------------------------------- -- the reduced SAGBI-basis of K[G] [ x[4] + x[6], x[1], x[2]^2 + x[3]^2, x[2]x[3]x[4] - 1/2x[2]^2x[5] + 1/2x[3]^2x[5] - x[2]x[3]x[6], x[5]^2 - 4x[4]x[6], x[3]^2x[4] - x[2]x[3]x[5] + x[2]^2x[6]] ------------------------------- -- Done. -------------------------------

#### Example

Use R::=QQ[x,y]; G:=[x+y, xy, xy^2]; SB.Sagbi(G); SB.ReducedSagbi(G); ------------------------------------------------------- -- output: --- Computation was interrupted --- NULL ------------------------------- ERROR: SB.ReducedSagbi: No finite SAGBI-Basis is existing! CONTEXT: Error("SB.ReducedSagbi: No finite SAGBI-Basis is existing!") ------------------------------- -- Done. -------------------------------