Difference between revisions of "ApCoCoA-1:Other5 groups"

From ApCoCoAWiki
(New page: === <div id="Other5_groups">Other groups</div> === ==== Description ==== The first group, denoted by G, has an order |G| = 4224 and can be represent...)
 
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=== <div id="Other5_groups">[[:ApCoCoA:Symbolic data#Other_groups|Other groups]]</div> ===
+
=== <div id="Other5_groups">[[:ApCoCoA:Symbolic data#Other_groups|Other Groups]]</div> ===
 
==== Description ====
 
==== Description ====
 
The first group, denoted by G, has an order |G| = 4224 and can be represented as:
 
The first group, denoted by G, has an order |G| = 4224 and can be represented as:
Line 7: Line 7:
  
 
==== Reference ====  
 
==== Reference ====  
 +
No reference available
  
 
==== Computation of G ====
 
==== Computation of G ====
Line 15: Line 16:
 
   Use ZZ/(2)[a,b,c,d];
 
   Use ZZ/(2)[a,b,c,d];
 
   NC.SetOrdering("LLEX");
 
   NC.SetOrdering("LLEX");
   Define CreateRelationsOther4()
+
   Define CreateRelationsOther5()
 
     Relations:=[];
 
     Relations:=[];
 
      
 
      
Line 33: Line 34:
 
   EndDefine;
 
   EndDefine;
 
    
 
    
   Relations:=CreateRelationsOther4();
+
   Relations:=CreateRelationsOther5();
 
   GB:=NC.GB(Relations,31,1,100,1000);
 
   GB:=NC.GB(Relations,31,1,100,1000);
 +
====G in Symbolic Data Format====
 +
  <FREEALGEBRA createdAt="2014-01-24" createdBy="strohmeier">
 +
  <vars>a,b,c,d</vars>
 +
  <uptoDeg>12</uptoDeg>
 +
  <basis>
 +
  <ncpoly>a*c-1</ncpoly>
 +
  <ncpoly>c*a-1</ncpoly>
 +
  <ncpoly>b*d-1</ncpoly>
 +
  <ncpoly>d*b-1</ncpoly>
 +
  <ncpoly>a*a*d*d*d*d-1</ncpoly>
 +
  <ncpoly>(a*b*a*b*a*b*b*b)^2-1</ncpoly>
 +
  <Comment>relation:(ababab^{3})^{2} = 1</Comment>
 +
  </basis>
 +
  <Comment>The partial LLex Gb has 96 elements</Comment>
 +
  <Comment>Other_groups5</Comment>
 +
  </FREEALGEBRA>
  
 
==== Computation of H ====
 
==== Computation of H ====
 +
 +
  /*Use the ApCoCoA package ncpoly.*/
 
    
 
    
  /*Use the ApCoCoA package ncpoly.*/
 
 
 
   // a is invers to c and b is invers to d
 
   // a is invers to c and b is invers to d
 
   Use ZZ/(2)[a,b,c,d];
 
   Use ZZ/(2)[a,b,c,d];
 
   NC.SetOrdering("LLEX");
 
   NC.SetOrdering("LLEX");
   Define CreateRelationsOther4()
+
   Define CreateRelationsOther6()
 
     Relations:=[];
 
     Relations:=[];
 
      
 
      
Line 61: Line 78:
 
   EndDefine;
 
   EndDefine;
 
    
 
    
   Relations:=CreateRelationsOther4();
+
   Relations:=CreateRelationsOther6();
 
   GB:=NC.GB(Relations,31,1,100,1000);
 
   GB:=NC.GB(Relations,31,1,100,1000);
 +
 +
====H in Symbolic Data Format====
 +
  <FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier">
 +
  <vars>a,b,c,d</vars>
 +
  <uptoDeg>13</uptoDeg>
 +
  <basis>
 +
  <ncpoly>a*c-1</ncpoly>
 +
  <ncpoly>c*a-1</ncpoly>
 +
  <ncpoly>b*d-1</ncpoly>
 +
  <ncpoly>d*b-1</ncpoly>
 +
  <Comment>polynomials to define inverse elements</Comment>
 +
  <ncpoly>a*a*b*b*b*b-1</ncpoly>
 +
  <ncpoly>(a*b*a*b*a*b*b*b)^2-1</ncpoly>
 +
  <Comment>relation:(ababab^{3})^{2}= 1</Comment>
 +
  </basis>
 +
  <Comment>The partial LLex Gb has 268 elements</Comment>
 +
  <Comment>Other_groups6</Comment>
 +
  </FREEALGEBRA>

Latest revision as of 21:09, 22 April 2014

Description

The first group, denoted by G, has an order |G| = 4224 and can be represented as:

 G = <a,b | a^{2}b^{-4} = (ababab^{3})^{2} = 1>

The second group, denoted by H, is also solvable and has the following representation:

 H = <a,b | a^{2}b^{4} = (ababab^{3})^{2} = 1>

Reference

No reference available

Computation of G

 /*Use the ApCoCoA package ncpoly.*/
 
 // a is invers to c and b is invers to d
 Use ZZ/(2)[a,b,c,d];
 NC.SetOrdering("LLEX");
 Define CreateRelationsOther5()
   Relations:=[];
   
   // add the invers relations ac = ca = bd = db = 1
   Append(Relations,[[a,c],[1]]);
   Append(Relations,[[c,a],[1]]);
   Append(Relations,[[b,d],[1]]);   
   Append(Relations,[[d,b],[1]]);
   
   // add the relation a^{2}b^{-4} = 1
   Append(Relations,[[a,a,d,d,d,d],[1]]);
   
   // add the relation (ababab^{3})^{2} = 1
   Append(Relations,[[a,b,a,b,a,b,b,b,a,b,a,b,a,b,b,b],[1]]);
   
   Return Relations;
 EndDefine;
 
 Relations:=CreateRelationsOther5();
 GB:=NC.GB(Relations,31,1,100,1000);

G in Symbolic Data Format

 <FREEALGEBRA createdAt="2014-01-24" createdBy="strohmeier">
 	<vars>a,b,c,d</vars>
 	<uptoDeg>12</uptoDeg>
 	<basis>
 	<ncpoly>a*c-1</ncpoly>
 	<ncpoly>c*a-1</ncpoly>
 	<ncpoly>b*d-1</ncpoly>
 	<ncpoly>d*b-1</ncpoly>
 	<ncpoly>a*a*d*d*d*d-1</ncpoly>
 	<ncpoly>(a*b*a*b*a*b*b*b)^2-1</ncpoly>
 	<Comment>relation:(ababab^{3})^{2} = 1</Comment>
 	</basis>
 	<Comment>The partial LLex Gb has 96 elements</Comment>
 	<Comment>Other_groups5</Comment>
 </FREEALGEBRA>

Computation of H

 /*Use the ApCoCoA package ncpoly.*/
 
 // a is invers to c and b is invers to d
 Use ZZ/(2)[a,b,c,d];
 NC.SetOrdering("LLEX");
 Define CreateRelationsOther6()
   Relations:=[];
   
   // add the invers relations ac = ca = bd = db = 1
   Append(Relations,[[a,c],[1]]);
   Append(Relations,[[c,a],[1]]);
   Append(Relations,[[b,d],[1]]);   
   Append(Relations,[[d,b],[1]]);
   
   // add the relation a^{2}b^{4} = 1
   Append(Relations,[[a,a,b,b,b,b],[1]]);
   
   // add the relation (ababab^{3})^{2} = 1
   Append(Relations,[[a,b,a,b,a,b,b,b,a,b,a,b,a,b,b,b],[1]]);
   
   Return Relations;
 EndDefine;
 
 Relations:=CreateRelationsOther6();
 GB:=NC.GB(Relations,31,1,100,1000);

H in Symbolic Data Format

 <FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier">
 	<vars>a,b,c,d</vars>
 	<uptoDeg>13</uptoDeg>
 	<basis>
 	<ncpoly>a*c-1</ncpoly>
 	<ncpoly>c*a-1</ncpoly>
 	<ncpoly>b*d-1</ncpoly>
 	<ncpoly>d*b-1</ncpoly>
 	<Comment>polynomials to define inverse elements</Comment>
 	<ncpoly>a*a*b*b*b*b-1</ncpoly>
 	<ncpoly>(a*b*a*b*a*b*b*b)^2-1</ncpoly>
 	<Comment>relation:(ababab^{3})^{2}= 1</Comment>
 	</basis>
 	<Comment>The partial LLex Gb has 268 elements</Comment>
 	<Comment>Other_groups6</Comment>
 </FREEALGEBRA>