# Difference between revisions of "ApCoCoA-1:Other2 groups"

### Other groups

#### Description

The first group is called Rosenberger-Monster and is the largest finite generalized triangle group. A finite representation of G is given below:

``` G = <a,b | a^2 = b^3 = (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1>
```

The second group is already infinite and denoted by H:

``` H = <a,b | a^2 = b^3 = (abababab^{2}abab^{2}ab^{2})^2 = 1>
```

#### Reference

On the Rosenberger Monster Robert Fitzgerald Morse, Department of Electrical Engineering and Computer Science, University of Evansville IN 47722 USA

#### Computation of G

``` /*Use the ApCoCoA package ncpoly.*/

Use ZZ/(2)[a,b];
NC.SetOrdering("LLEX");

Define CreateRelationsOther2()
Relations:=[];

// add the relations a^2 = b^3 = 1
Append(Relations,[[a,a],[1]]);
Append(Relations,[[b,b,b],[1]]);

// add the relation (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1
Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2],[1]]);

Return Relations;
EndDefine;

Relations:=CreateRelationsOther2();
Gb:=NC.GB(Relations,31,1,100,1000);
```

#### Computation of H

``` /*Use the ApCoCoA package ncpoly.*/

Use ZZ/(2)[a,b];
NC.SetOrdering("LLEX");

Define CreateRelationsOther3()
Relations:=[];

// add the relations a^2 = b^3 = 1
Append(Relations,[[a,a],[1]]);
Append(Relations,[[b,b,b],[1]]);

// add the relation (abababab^{2}abab^{2}ab^{2})^2 = 1
Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2],[1]]);

Return Relations;
EndDefine;

Relations:=CreateRelationsOther3();
Gb:=NC.GB(Relations,31,1,100,1000);
```