ApCoCoA-1:Num.QR: Difference between revisions

From ApCoCoAWiki
Jan (talk | contribs)
Updated example. Use Dec to make result human readable.
m replaced <quotes> tag by real quotes
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
   <command>
   {{Version|1}}
<command>
     <title>Num.QR</title>
     <title>Num.QR</title>
     <short_description>Computes the QR-decomposition of a matrix.</short_description>
     <short_description>Computes the QR-decomposition of a matrix.</short_description>
Line 8: Line 9:
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
<par/>
<par/>
Calculates the QR decomposition of a matrix using Lapack.
This command computes the QR-decomposition of a matrix using the external library Lapack, i.e. the matrix <tt>A</tt> will be decomposed into the product of an orthogonal matrix <tt>Q</tt> and an upper-right triangular matrix <tt>R</tt>.


<itemize>
<itemize>
<item>@param <em>A</em> Matrix A</item>
<item>@param <em>A</em> The matrix to decompose.</item>
<item>@return An orthogonal matrix Q and an upper-right triangular matrix R such that Q*R=A.</item>
<item>@return An orthogonal matrix <tt>Q</tt> and an upper-right triangular matrix <tt>R</tt> such that <tt>Q*R=A</tt>.</item>
</itemize>
</itemize>


Line 23: Line 24:
-------------------------------
-------------------------------
Mat([
Mat([
   [<quote>0.999</quote>, <quote>1.999</quote>, <quote>2.999</quote>],
   ["0.999", "1.999", "2.999"],
   [<quote>1.999</quote>, <quote>2.999</quote>, <quote>3.999</quote>],
   ["1.999", "2.999", "3.999"],
   [<quote>2.999</quote>, <quote>3.999</quote>, <quote>4.999</quote>]
   ["2.999", "3.999", "4.999"]
])
])
-------------------------------
-------------------------------
Line 31: Line 32:
     </description>
     </description>
     <seealso>
     <seealso>
       <see>Introduction to CoCoAServer</see>
       <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see>
       <see>Num.SVD</see>
       <see>ApCoCoA-1:Num.SVD|Num.SVD</see>
       <see>Num.EigenValues</see>
       <see>ApCoCoA-1:Num.EigenValues|Num.EigenValues</see>
       <see>Num.EigenValuesAndVectors</see>
       <see>ApCoCoA-1:Num.EigenValuesAndVectors|Num.EigenValuesAndVectors</see>
       <see>Num.EigenValuesAndAllVectors</see>
       <see>ApCoCoA-1:Num.EigenValuesAndAllVectors|Num.EigenValuesAndAllVectors</see>
     </seealso>
     </seealso>
     <types>
     <types>
Line 44: Line 45:
     <key>qr</key>
     <key>qr</key>
     <key>numerical.qr</key>
     <key>numerical.qr</key>
     <wiki-category>Package_numerical</wiki-category>
     <wiki-category>ApCoCoA-1:Package_numerical</wiki-category>
   </command>
   </command>

Latest revision as of 13:48, 29 October 2020

This article is about a function from ApCoCoA-1.

Num.QR

Computes the QR-decomposition of a matrix.

Syntax

Num.QR(A:MAT):[Q:MAT,R:MAT]

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This command computes the QR-decomposition of a matrix using the external library Lapack, i.e. the matrix A will be decomposed into the product of an orthogonal matrix Q and an upper-right triangular matrix R.

  • @param A The matrix to decompose.

  • @return An orthogonal matrix Q and an upper-right triangular matrix R such that Q*R=A.

Example

Points:=Mat([[1,2,3],[2,3,4],[3,4,5]]);
QR := Num.QR(Points);
Dec(QR[1]*QR[2],3);

-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Mat([
  ["0.999", "1.999", "2.999"],
  ["1.999", "2.999", "3.999"],
  ["2.999", "3.999", "4.999"]
])
-------------------------------

See also

Introduction to CoCoAServer

Num.SVD

Num.EigenValues

Num.EigenValuesAndVectors

Num.EigenValuesAndAllVectors