# Difference between revisions of "ApCoCoA-1:Num.LeastSquaresQR"

From ApCoCoAWiki

m (Updated data types) |
|||

Line 3: | Line 3: | ||

<short_description>Computes the least squares solution of the linear system of equations <tt>Ax=b</tt>.</short_description> | <short_description>Computes the least squares solution of the linear system of equations <tt>Ax=b</tt>.</short_description> | ||

<syntax> | <syntax> | ||

− | Num.LeastSquaresQR(Mat:MAT, Vec:MAT): | + | Num.LeastSquaresQR(Mat:MAT, Vec:MAT):LIST |

</syntax> | </syntax> | ||

<description> | <description> | ||

Line 21: | Line 21: | ||

-- CoCoAServer: computing Cpu Time = 0 | -- CoCoAServer: computing Cpu Time = 0 | ||

------------------------------- | ------------------------------- | ||

− | + | [<quotes>-0.99</quotes>, <quotes>1</quotes>] | |

− | |||

− | |||

− | |||

------------------------------- | ------------------------------- | ||

</example> | </example> |

## Revision as of 15:23, 28 February 2011

## Num.LeastSquaresQR

Computes the least squares solution of the linear system of equations `Ax=b`.

### Syntax

Num.LeastSquaresQR(Mat:MAT, Vec:MAT):LIST

### Description

*Please note:* The function(s) explained on this page is/are using the *ApCoCoAServer*. You will have to start the ApCoCoAServer in order to use it/them.

This command computes the least squares solution of the linear system of equations `Ax=b`, if there is no exact solution. The matrix `Mat` must have the same number of rows as `Vec`.

The QR decomposition of `Mat` is used to find the solution.

@param

*Mat*Matrix`A`of the linear system of equations.@param

*Vec*Vector`B`as a matrix.@return The least squares solution to

`Ax=b`.

#### Example

Dec(Num.LeastSquaresQR([[1,1],[0,1],[1,1]],[[0],[1],[0]]),2); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [<quotes>-0.99</quotes>, <quotes>1</quotes>] -------------------------------

### See also