ApCoCoA-1:NCo.Multiply: Difference between revisions

From ApCoCoAWiki
m insert version info
m replaced <quotes> tag by real quotes
 
Line 11: Line 11:
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
<par/>
<par/>
Please set ring environment <em>coefficient field</em> <tt> K</tt>, <em>alphabet</em> (or set of indeterminates) <tt>X</tt> and <em>ordering</em> via the functions <ref>ApCoCoA-1:NCo.SetFp|NCo.SetFp</ref>, <ref>ApCoCoA-1:NCo.SetX|NCo.SetX</ref> and <ref>ApCoCoA-1:NCo.SetOrdering|NCo.SetOrdering</ref>, respectively, before using this function. The default coefficient field is <tt>Q</tt>, and the default ordering is the length-lexicographic ordering (<quotes>LLEX</quotes>). For more information, please check the relevant functions.
Please set ring environment <em>coefficient field</em> <tt> K</tt>, <em>alphabet</em> (or set of indeterminates) <tt>X</tt> and <em>ordering</em> via the functions <ref>ApCoCoA-1:NCo.SetFp|NCo.SetFp</ref>, <ref>ApCoCoA-1:NCo.SetX|NCo.SetX</ref> and <ref>ApCoCoA-1:NCo.SetOrdering|NCo.SetOrdering</ref>, respectively, before using this function. The default coefficient field is <tt>Q</tt>, and the default ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.
<itemize>
<itemize>
<item>@param <em>F1, F2:</em> two polynomials in <tt>K&lt;X&gt;</tt>, which are left and right operands of multiplication respectively. Each polynomial is represented as a LIST of monomials, which are LISTs of the form [C, W] where W is a word in <tt>&lt;X&gt;</tt> and C is the coefficient of W. For example, the polynomial <tt>f=xy-y+1</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item>
<item>@param <em>F1, F2:</em> two polynomials in <tt>K&lt;X&gt;</tt>, which are left and right operands of multiplication respectively. Each polynomial is represented as a LIST of monomials, which are LISTs of the form [C, W] where W is a word in <tt>&lt;X&gt;</tt> and C is the coefficient of W. For example, the polynomial <tt>f=xy-y+1</tt> is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item>
<item>@return: a LIST which represents the polynomial equal to <tt>F1*F2</tt>.</item>
<item>@return: a LIST which represents the polynomial equal to <tt>F1*F2</tt>.</item>
</itemize>
</itemize>
<example>
<example>
NCo.SetFp(3);
NCo.SetFp(3);
NCo.SetX(<quotes>abc</quotes>);
NCo.SetX("abc");
NCo.RingEnv();
NCo.RingEnv();
Coefficient ring : Fp = Z/(3)
Coefficient ring : Fp = Z/(3)
Line 24: Line 24:
Ordering : LLEX
Ordering : LLEX
-------------------------------
-------------------------------
F1 := [[2,<quotes>a</quotes>],[1,<quotes></quotes>]];
F1 := [[2,"a"],[1,""]];
F2 := [[2,<quotes>b</quotes>],[1,<quotes>ba</quotes>]];
F2 := [[2,"b"],[1,"ba"]];
NCo.Multiply(F1,F2); -- over F3
NCo.Multiply(F1,F2); -- over F3
[[2, <quotes>aba</quotes>], [1, <quotes>ab</quotes>], [1, <quotes>ba</quotes>], [2, <quotes>b</quotes>]]
[[2, "aba"], [1, "ab"], [1, "ba"], [2, "b"]]
-------------------------------
-------------------------------
NCo.Multiply(F2,F1);
NCo.Multiply(F2,F1);
[[2, <quotes>baa</quotes>], [2, <quotes>ba</quotes>], [2, <quotes>b</quotes>]]
[[2, "baa"], [2, "ba"], [2, "b"]]
-------------------------------
-------------------------------
NCo.Multiply(F1,[]);
NCo.Multiply(F1,[]);
Line 48: Line 48:
-------------------------------
-------------------------------
NCo.Multiply(F1,F2); -- over Q
NCo.Multiply(F1,F2); -- over Q
[[2, <quotes>aba</quotes>], [4, <quotes>ab</quotes>], [1, <quotes>ba</quotes>], [2, <quotes>b</quotes>]]
[[2, "aba"], [4, "ab"], [1, "ba"], [2, "b"]]
-------------------------------
-------------------------------
NCo.Multiply(F2,F1);
NCo.Multiply(F2,F1);
[[2, <quotes>baa</quotes>], [5, <quotes>ba</quotes>], [2, <quotes>b</quotes>]]
[[2, "baa"], [5, "ba"], [2, "b"]]
-------------------------------
-------------------------------
</example>
</example>

Latest revision as of 13:43, 29 October 2020

This article is about a function from ApCoCoA-1.

NCo.Multiply

Multiplication of two polynomials in a free monoid ring.

Syntax

NCo.Multiply(F1:LIST, F2:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set ring environment coefficient field K, alphabet (or set of indeterminates) X and ordering via the functions NCo.SetFp, NCo.SetX and NCo.SetOrdering, respectively, before using this function. The default coefficient field is Q, and the default ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.

  • @param F1, F2: two polynomials in K<X>, which are left and right operands of multiplication respectively. Each polynomial is represented as a LIST of monomials, which are LISTs of the form [C, W] where W is a word in <X> and C is the coefficient of W. For example, the polynomial f=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. The zero polynomial 0 is represented as the empty LIST [].

  • @return: a LIST which represents the polynomial equal to F1*F2.

Example

NCo.SetFp(3);
NCo.SetX("abc");
NCo.RingEnv();
Coefficient ring : Fp = Z/(3)
Alphabet : abc
Ordering : LLEX
-------------------------------
F1 := [[2,"a"],[1,""]];
F2 := [[2,"b"],[1,"ba"]];
NCo.Multiply(F1,F2); -- over F3
[[2, "aba"], [1, "ab"], [1, "ba"], [2, "b"]]
-------------------------------
NCo.Multiply(F2,F1);
[[2, "baa"], [2, "ba"], [2, "b"]]
-------------------------------
NCo.Multiply(F1,[]);
[ ]
-------------------------------
NCo.Multiply([],F1);
[ ]
-------------------------------
NCo.Multiply([],[]);
[ ]
-------------------------------
NCo.UnsetFp();
NCo.RingEnv();
Coefficient ring : Q
Alphabet : abc
Ordering : LLEX
-------------------------------
NCo.Multiply(F1,F2); -- over Q
[[2, "aba"], [4, "ab"], [1, "ba"], [2, "b"]]
-------------------------------
NCo.Multiply(F2,F1);
[[2, "baa"], [5, "ba"], [2, "b"]]
-------------------------------

See also

NCo.SetFp

NCo.SetOrdering

NCo.SetX

Introduction to CoCoAServer