# ApCoCoA-1:NC.MB

## NC.MB

Enumerate Macaulay basis of a `K`-algebra.

### Syntax

NC.MB(Gb:LIST):LIST NC.MB(Gb:LIST, DegreeBound:INT):LIST

### Description

*Please note:* The function(s) explained on this page is/are using the *ApCoCoAServer*. You will have to start the ApCoCoAServer in order to use it/them.

Please set ring environment *coefficient field* `K`, *alphabet* (or set of indeterminates) `X` and *ordering* via the functions NC.SetFp, NC.SetX and NC.SetOrdering, respectively, before calling the function. Default coefficient field is `Q`. Default ordering is length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.

@param

*Gb:*a LIST of non-zero polynomials in`K<X>`which is a Groebner basis (w.r.t. a`length compatible`admissible ordering, say`Ordering`) of the two-sided ideal generated by Gb. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in`<X>`and C is the coefficient of W. For example, the polynomial`F=xy-y+1`is represented as F:=[[1,"xy"], [-1, "y"], [1,""]].*Warning:*users should take responsibility to make sure that Gb is indeed a Groebner basis w.r.t.`Ordering`! In the case that Gb is a partical Groebner basis, the function enumerates a pseudo basis.@param

*DegreeBound:*(optional) a positive integer which is a degree bound of Hilbert funtion.*Note that*we set`DegreeBound=32`by default. Thus to compute the whole Macaulay basis, it is necessary to set`DegreeBound`to a larger enough number.@return: a LIST of terms, which forms the Macaulay basis of the K-algebra

`K<X>/(Gb)`w.r.t.`Ordering`.

#### Example

NC.SetX(<quotes>xyzt</quotes>); NC.SetOrdering(<quotes>LLEX</quotes>); Gb:= [[[1, <quotes>yt</quotes>], [-1, <quotes>ty</quotes>]], [[1, <quotes>xt</quotes>], [-1, <quotes>tx</quotes>]], [[1, <quotes>xy</quotes>], [-1, <quotes>ty</quotes>]], [[1, <quotes>xx</quotes>], [-1, <quotes>yx</quotes>]], [[1, <quotes>tyy</quotes>], [-1, <quotes>tty</quotes>]], [[1, <quotes>yyx</quotes>], [-1, <quotes>tyx</quotes>]]]; NC.MB(Gb,3); [[<quotes></quotes>], [<quotes>t</quotes>, <quotes>z</quotes>, <quotes>y</quotes>, <quotes>x</quotes>], [<quotes>tt</quotes>, <quotes>tz</quotes>, <quotes>ty</quotes>, <quotes>tx</quotes>, <quotes>zt</quotes>, <quotes>zz</quotes>, <quotes>zy</quotes>, <quotes>zx</quotes>, <quotes>yz</quotes>, <quotes>yy</quotes>, <quotes>yx</quotes>, <quotes>xz</quotes>], [<quotes>ttt</quotes>, <quotes>ttz</quotes>, <quotes>tty</quotes>, <quotes>ttx</quotes>, <quotes>tzt</quotes>, <quotes>tzz</quotes>, <quotes>tzy</quotes>, <quotes>tzx</quotes>, <quotes>tyz</quotes>, <quotes>tyx</quotes>, <quotes>txz</quotes>, <quotes>ztt</quotes>, <quotes>ztz</quotes>, <quotes>zty</quotes>, <quotes>ztx</quotes>, <quotes>zzt</quotes>, <quotes>zzz</quotes>, <quotes>zzy</quotes>, <quotes>zzx</quotes>, <quotes>zyz</quotes>, <quotes>zyy</quotes>, <quotes>zyx</quotes>, <quotes>zxz</quotes>, <quotes>yzt</quotes>, <quotes>yzz</quotes>, <quotes>yzy</quotes>, <quotes>yzx</quotes>, <quotes>yyz</quotes>, <quotes>yyy</quotes>, <quotes>yxz</quotes>, <quotes>xzt</quotes>, <quotes>xzz</quotes>, <quotes>xzy</quotes>, <quotes>xzx</quotes>]] -------------------------------

### See also