# Difference between revisions of "ApCoCoA-1:NC.LWIdeal"

From ApCoCoAWiki

Line 33: | Line 33: | ||

<type>non_commutative</type> | <type>non_commutative</type> | ||

</types> | </types> | ||

− | <key> | + | <key>ncpoly.LWIdeal</key> |

<key>NC.LWIdeal</key> | <key>NC.LWIdeal</key> | ||

<key>LWIdeal</key> | <key>LWIdeal</key> | ||

− | <wiki-category> | + | <wiki-category>Package_ncpoly</wiki-category> |

</command> | </command> |

## Revision as of 17:39, 9 May 2013

## NC.LTIdeal

Leading word ideal of a finitely generated two-sided ideal in a non-commutative polynomial ring.

### Description

*Proposition:* Let `I` be a finitely generated two-sided ideal in a non-commutative polynomial ring `K<x[1],...,x[n]>`, and let `Ordering` be a word ordering on `<x[1],...,x[n]>`. If `G` is a Groebner basis of `I` with respect to `Ordering`. Then the leading word set `LW{G}:={LW(g): g in G}` is a generating system of the leading word ideal `LW(I)` with respect to `Ordering`.

#### Example

Use QQ[x,y,z,t]; NC.SetOrdering("LLEX"); F1 := [[x^2], [-y,x]]; F2 := [[x,y], [-t,y]]; F3 := [[x,t], [-t,x]]; F4 := [[y,t], [-t,y]]; G := [F1,F2,F3,F4]; GB:=NC.GB(G); [NC.LW(E) | E In GB]; -- the leading word ideal of <G> w.r.t. the length-lexicographic word ordering [[y, t], [x, t], [x, y], [x^2], [t, y^2], [y^2, x]] -------------------------------

### See also