Difference between revisions of "ApCoCoA-1:NC.HF"

NC.HF

Enumerate the values of the Hilbert function of a finitely generated K-algebra.

Let P be a finitely generated non-commutative polynomial ring over K, and let I be a finitely generated two-sided ideal in P. Then P/I is a finitely generated K-algebra. Moreover, for every integer i, we let F_{i} be the K-vector subspace generated by the words of length less than or equal to i. Clearly, the set {F_{i}} is a filtration of P. Further, the filtration {F_{i}} induces a filtration {F_{i}/(F_{i} intersects I)} of P/I. The Hilbert function of K-algebra P/I is a map HF: N --> N defined by HF(i)=dim(F_{i}/(F_{i} intersects I))-dim(F_{i-1}/(F_{i-1} intersects I)), i.e. HF(i) is equal to the number of words of length i in a Macaulay's basis (see NC.MB) of P/I.

Syntax

```NC.HF(G:LIST[, DB:INT]):LIST
```

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.

• @param G: a LIST of non-zero non-commutative polynomials, which form a Groebner basis with respect to a length compatible word ordering. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST []. Warning: users should take responsibility to ensure that G is indeed a Groebner basis with respect to a length compatible word ordering!

• @return: a LIST of non-negative integers, which are values of the Hilbert function of the K-algebra P/<G>.

Optional parameter:

• @param DB: a positive INT, which is a degree bound of the Hilbert function. Note that we set DB=32 by default. Thus, in the case that the K-dimension of P/<G> is finite, it is necessary to set DB to a large enough INT in order to compute all the values of the Hilbert function.

Example

```NC.SetX(<quotes>xyzt</quotes>);
NC.SetOrdering(<quotes>LLEX</quotes>);
Gb:= [[[1, <quotes>yt</quotes>], [-1, <quotes>ty</quotes>]], [[1, <quotes>xt</quotes>], [-1, <quotes>tx</quotes>]], [[1, <quotes>xy</quotes>], [-1, <quotes>ty</quotes>]], [[1, <quotes>xx</quotes>], [-1, <quotes>yx</quotes>]],
[[1, <quotes>tyy</quotes>], [-1, <quotes>tty</quotes>]], [[1, <quotes>yyx</quotes>], [-1, <quotes>tyx</quotes>]]];
NC.HF(Gb, 5);
[1, 4, 12, 34, 100, 292]
-------------------------------
```