# Difference between revisions of "ApCoCoA-1:NC.CoCoALToC"

From ApCoCoAWiki

Line 15: | Line 15: | ||

</itemize> | </itemize> | ||

<example> | <example> | ||

− | + | USE QQ[x[1..2],y[1..2]]; | |

− | F:=[[1, | + | F:= [[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]; --2x[1]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 |

− | NC. | + | NC.CoCoALToC(F); |

− | 3 | + | |

− | - | + | [[2, [1, 3, 2, 2]], [-9, [4, 1, 1, 2, 2, 2]], [5, [ ]]] |

− | |||

− | |||

------------------------------- | ------------------------------- | ||

</example> | </example> |

## Revision as of 17:23, 3 May 2013

## NC.CoCoALToC

Convert a polynomial in a non-commutative polynomial ring from the CoCoAL format to the C format.

### Syntax

NC.CoCoALToC(F:LIST):INT

### Description

Please set non-commutative polynomial ring (via the command Use) before calling this function. For more information, please check the relevant commands and functions.

@param

*F*: a non-commutative polynomial in the CoCoAL format. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial`f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5`is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial`0`is represented as the empty LIST [].@return: a LIST, which is the C format of the polynomial F.

#### Example

USE QQ[x[1..2],y[1..2]]; F:= [[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]; --2x[1]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 NC.CoCoALToC(F); [[2, [1, 3, 2, 2]], [-9, [4, 1, 1, 2, 2, 2]], [5, [ ]]] -------------------------------

### See also