Difference between revisions of "ApCoCoA-1:Latte.Minimize"

From ApCoCoAWiki
(New page: <command> <title>Latte.Minimize</title> <short_description> Minimizes the objective function over a polyhedral P given by a number of linear constraints</short_description> <syntax> Latte....)
 
m (insert version info)
 
(11 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
<title>Latte.Minimize</title>
 
<title>Latte.Minimize</title>
<short_description> Minimizes the objective function over a polyhedral P given by a number of linear constraints</short_description>
+
<short_description>Minimizes the objective function over a polyhedral P given by a number of linear constraints.</short_description>
 
<syntax>
 
<syntax>
Latte.Minimize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):INT
+
Latte.Minimize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):LIST
 
</syntax>
 
</syntax>
  
 
<description>
 
<description>
{{ApCoCoAServer}}
+
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
  
 
<itemize>
 
<itemize>
Line 13: Line 14:
 
<item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item>
 
<item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item>
 
<item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item>
 
<item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item>
<item>@param <em>ObjectiveF</em>: A linear Polynomial</item>
+
<item>@param <em>ObjectiveF</em>: A linear polynomial</item>
<item>@return The optimal value of the objective function</item>
+
<item>@return A list: <tt>[[Optimal coordinates], Optimal solution, [Coeffs of objective function]]</tt></item>
 
</itemize>
 
</itemize>
  
 
<example>
 
<example>
 +
Use S ::= QQ[x,y];
 +
Equations := [];
 +
LesserEq := [-x-2, x-y-24];
 +
GreaterEq := [-x,-y];
 +
ObjectiveF := x-2y;
 +
Latte.Minimize(Equations, LesserEq, GreaterEq, ObjectiveF);
  
 +
[[-2, 0], -2, [1, -2]]
 +
-------------------------------
 
</example>
 
</example>
  
 
</description>
 
</description>
 
<types>
 
<types>
   <type>cocoaserver</type>
+
   <type>apcocoaserver</type>
 
</types>
 
</types>
<key>LattE</key>
+
<key>Latte</key>
 
<key>Minimize</key>
 
<key>Minimize</key>
 
<key>Latte.Minimize</key>
 
<key>Latte.Minimize</key>
<key>latte.Minimize</key>
+
<wiki-category>ApCoCoA-1:Package_latte</wiki-category>
<wiki-category>Package_latte</wiki-category>
 
 
</command>
 
</command>

Latest revision as of 10:10, 7 October 2020

This article is about a function from ApCoCoA-1.

Latte.Minimize

Minimizes the objective function over a polyhedral P given by a number of linear constraints.

Syntax

Latte.Minimize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints

  • @param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints

  • @param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints

  • @param ObjectiveF: A linear polynomial

  • @return A list: [[Optimal coordinates], Optimal solution, [Coeffs of objective function]]

Example

Use S ::= QQ[x,y];
Equations := [];
LesserEq := [-x-2, x-y-24];
GreaterEq := [-x,-y];
ObjectiveF := x-2y;
Latte.Minimize(Equations, LesserEq, GreaterEq, ObjectiveF);

[[-2, 0], -2, [1, -2]]
-------------------------------