ApCoCoA-1:Latte.Maximize: Difference between revisions

From ApCoCoAWiki
Jbrandt (talk | contribs)
No edit summary
m insert version info
 
(13 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Version|1}}
<command>
<command>
<title>Latte.Maximize</title>
<title>Latte.Maximize</title>
<short_description> Maximizes the objective function over a polyhedral P given by a number of linear constraints</short_description>
<short_description>Maximizes the objective function over a polyhedral P given by a number of linear constraints.</short_description>
<syntax>
<syntax>
Latte.Maximize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):INT
Latte.Maximize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):LIST
</syntax>
</syntax>


<description>
<description>
{{ApCoCoAServer}}
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.


<itemize>
<itemize>
Line 13: Line 14:
<item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item>
<item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item>
<item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item>
<item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item>
<item>@param <em>ObjectiveF</em>: A linear Polynomial</item>
<item>@param <em>ObjectiveF</em>: A linear polynomial</item>
<item>@return The optimal value of the objective function</item>
<item>@return A list <tt>[[Optimal coordinates], Optimal solution, [Coeffs of objective function]]</tt></item>
</itemize>
</itemize>


Line 22: Line 23:
LesserEq := [x-1, x+y-1];
LesserEq := [x-1, x+y-1];
GreaterEq := [x,y];
GreaterEq := [x,y];
ObjectiveF := x + z;
ObjectiveF := x + y;
Latte.Maximize(Equations, LesserEq, GreaterEq, ObjectiveF);
Latte.Maximize(Equations, LesserEq, GreaterEq, ObjectiveF);
[[1, 0], 1, [1, 1]]
-------------------------------
</example>
</example>


</description>
</description>
<types>
<types>
   <type>cocoaserver</type>
   <type>apcocoaserver</type>
</types>
</types>
<key>LattE</key>
<see>ApCoCoA-1:GLPK.LPSolve|GLPK.LPSolve</see>
 
<key>Latte</key>
<key>Maximize</key>
<key>Maximize</key>
<key>Latte.Maximize</key>
<key>Latte.Maximize</key>
<key>latte.Maximize</key>
<wiki-category>ApCoCoA-1:Package_latte</wiki-category>
<wiki-category>Package_latte</wiki-category>
</command>
</command>

Latest revision as of 10:10, 7 October 2020

This article is about a function from ApCoCoA-1.

Latte.Maximize

Maximizes the objective function over a polyhedral P given by a number of linear constraints.

Syntax

Latte.Maximize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints

  • @param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints

  • @param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints

  • @param ObjectiveF: A linear polynomial

  • @return A list [[Optimal coordinates], Optimal solution, [Coeffs of objective function]]

Example

Use S ::= QQ[x,y];
Equations := [];
LesserEq := [x-1, x+y-1];
GreaterEq := [x,y];
ObjectiveF := x + y;
Latte.Maximize(Equations, LesserEq, GreaterEq, ObjectiveF);

[[1, 0], 1, [1, 1]]
-------------------------------


GLPK.LPSolve