ApCoCoA-1:Latte.Count: Difference between revisions

From ApCoCoAWiki
Jbrandt (talk | contribs)
New page: <command> <title>latte.Count</title> <short_description> Count</short_description> <syntax> latte.Count() </syntax> <description> {{ApCoCoAServer}} <itemize> <item><em></em></item> </it...
 
Jbrandt (talk | contribs)
No edit summary
Line 1: Line 1:
<command>
<command>
<title>latte.Count</title>
<title>Latte.Count</title>
<short_description> Count</short_description>
<short_description> Counts the lattice points of a polyhedral given by a number of linear constraints</short_description>
<syntax>
<syntax>
latte.Count()
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT
</syntax>
</syntax>
<syntax>
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT
</syntax>
<description>
<description>
{{ApCoCoAServer}}
{{ApCoCoAServer}}


<itemize>
<itemize>
 
<item><em>Equations</em>: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints</item>
<item><em></em></item>
<item><em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item>
 
<item><em>LesserEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item>
<item><em>Dil</em>: Integer > 0, factor for dilation of the polyhedral P, to count the lattice points of the polyhedral n*P</item>
</itemize>
</itemize>


<example>
<example>
 
To count the lattice points in the polyhedral P = {x &gt;= 0, y &gt;= 0, x &lt;= 1, x + y &lt;= 1}:
</example>
Use S ::= QQ[x,y];
 
Equations := [];
<example>
LesserEq := [x-1, x+y-1];
 
GreaterEq := [x,y];
Latte.Count(Equations, LesserEq, GreaterEq);
</example>
</example>


Line 28: Line 35:
<key>LattE</key>
<key>LattE</key>
<key>Count</key>
<key>Count</key>
<key>jbrandt</key>
<key>Latte.Count</key>
<key>skuehling</key>
<key>latte.Count</key>
<wiki-category>Package_latte</wiki-category>
<wiki-category>Package_latte</wiki-category>
</command>
</command>

Revision as of 19:24, 20 April 2009

Latte.Count

Counts the lattice points of a polyhedral given by a number of linear constraints

Syntax

Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT

Syntax

Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use

it/them.

  • Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints

  • LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints

  • LesserEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints

  • Dil: Integer > 0, factor for dilation of the polyhedral P, to count the lattice points of the polyhedral n*P

Example

To count the lattice points in the polyhedral P = {x &gt;= 0, y &gt;= 0, x &lt;= 1, x + y &lt;= 1}:
Use S ::= QQ[x,y];
Equations := [];
LesserEq := [x-1, x+y-1];
GreaterEq := [x,y];
Latte.Count(Equations, LesserEq, GreaterEq);