# Difference between revisions of "ApCoCoA-1:IML.Solve"

(Description update.) |
|||

Line 39: | Line 39: | ||

</example> | </example> | ||

</description> | </description> | ||

+ | |||

+ | <see>Introduction to CoCoAServer</see> | ||

<see>LinBox.Solve</see> | <see>LinBox.Solve</see> | ||

<see>LinKer</see> | <see>LinKer</see> |

## Revision as of 12:51, 24 April 2009

## IML.Solve

Solve a linear equation system.

### Syntax

IML.Solve(M:MAT, B:MAT):MAT

### Description

*Please note:* The function(s) explained on this page is/are using the *ApCoCoAServer*. You will have to start the ApCoCoAServer in order to use it/them.

Let `M` and `B` be matrices defined over the ring of integers, a finite field or the field of rationals. This function tries to solve the linear equation system `M*X = B` by using the ApCoCoAServer supported by the IML library.

The return value will be a solution vector of the linear equation system or an empty matrix if no solution has been found.

@param

*M*A matrix with components either of type INT, ZMOD or RAT.@param

*B*A matrix with components either of type INT, ZMOD or RAT.@return A matrix X representing a solution vector of the linear equation system M*X = B if a solution exists or the empty matrix otherwise.

#### Example

Use ZZ/(19)[x]; M := BringIn(Mat([[1,3,4], [0,2,1]])); B := BringIn(Mat([[1], [2]])); IML.Solve(M, B); ------------------------------- Mat([ [-2 % 19], [1 % 19], [0 % 19] ]) -------------------------------

#### Example

Use QQ[x]; M := Mat([ [1,3,4], [0,2,1], [1,3,4] ]); B := Mat([ [1], [2], [0] ]); IML.Solve(M, B); ------------------------------- Mat([ [ ] ]) -------------------------------