# Difference between revisions of "ApCoCoA-1:Extended Hecke groups"

From ApCoCoAWiki

StrohmeierB (talk | contribs) |
StrohmeierB (talk | contribs) |
||

Line 1: | Line 1: | ||

=== <div id="Extended Hecke_Groups">[[:ApCoCoA:Symbolic data#Extended Hecke_Groups|Extended Hecke Groups]]</div> === | === <div id="Extended Hecke_Groups">[[:ApCoCoA:Symbolic data#Extended Hecke_Groups|Extended Hecke Groups]]</div> === | ||

==== Description ==== | ==== Description ==== | ||

+ | The Hecke group is a group consisting of linear fractional transformations preserving the upper half plane. The extended Hecke group generate by adding the reflection R(z) = 1/z. So the extended Hecke group has the following presentation: | ||

+ | <R,X,Y | R^2 = X^2 = Y^p = (RX)^2 = (YR)^2 = 1> | ||

==== Reference ==== | ==== Reference ==== |

## Revision as of 09:18, 20 July 2014

#### Description

The Hecke group is a group consisting of linear fractional transformations preserving the upper half plane. The extended Hecke group generate by adding the reflection R(z) = 1/z. So the extended Hecke group has the following presentation:

<R,X,Y | R^2 = X^2 = Y^p = (RX)^2 = (YR)^2 = 1>

#### Reference

Ma. Louise Antonette N. De Las Peñas, Ma. Carlota B. Decena and Glenn R. Laigo, ON THE SUBGROUPS OF THE EXTENDED HECKE, HECKE AND PICARD GROUPS, Proceedings of the 5th Asian Mathematical Conference, Malaysia 2009.

#### Computation

/*Use the ApCoCoA package ncpoly.*/ // Define the variable p of the extended Hecke group MEMORY.P := 3; Use ZZ/(2)[r,x,y]; NC.SetOrdering("LLEX"); Define CreateRelationsExtendedHeckegroup() Relations:=[]; //add the relation r^2 = 1 Append(Relations,[[r,r],[1]]); //add the relation x^2 = 1 Append(Relations,[[x,x],[1]]); //add the relation y^p = 1 Append(Relations,[[y^MEMORY.P],[1]]); //add the relation (rx)^2 = 1 Append(Relations,[[r,x,r,x],[1]]); // add the relation (yr)^2 = 1 Append(Relations,[[y,r,y,r],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsExtendedHeckegroup(); Relations; Gb:=NC.GB(Relations,31,1,100,1000); Gb;

#### Example in Symbolic Data Format

<FREEALGEBRA createdAt="2014-07-03" createdBy="strohmeier"> <vars>r,x,y</vars> <uptoDeg>53</uptoDeg> <basis> <ncpoly>r*r-1</ncpoly> <ncpoly>x*x-1</ncpoly> <ncpoly>y^3-1</ncpoly> <ncpoly>r*x*r*x-1</ncpoly> <ncpoly>y*r*y*r-1</ncpoly> </basis> <Comment>The partial LLex Gb has 69 elements</Comment> <Comment>Extended_Hecke_Group_p3</Comment> </FREEALGEBRA>