ApCoCoA-1:Dicyclic groups: Difference between revisions
From ApCoCoAWiki
No edit summary |
StrohmeierB (talk | contribs) |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
=== <div id="Dicyclic_groups">[[:ApCoCoA:Symbolic data#Dicyclic_groups|Dicyclic | === <div id="Dicyclic_groups">[[:ApCoCoA:Symbolic data#Dicyclic_groups|Dicyclic Groups]]</div> === | ||
==== Description ==== | ==== Description ==== | ||
The dicyclic groups are non-abelian groups with order 4n. For n = 2 the dicyclic group is isomporphic to the quarternion group Q. | The dicyclic groups are non-abelian groups with order 4n. For n = 2 the dicyclic group is isomporphic to the quarternion group Q. | ||
Line 20: | Line 20: | ||
Define CreateRelationsDicyclic() | Define CreateRelationsDicyclic() | ||
Relations:=[]; | Relations:=[]; | ||
// Add the relation a^{2n} = 1 | |||
Append(Relations, [[a^(2*MEMORY.N)], [1]]); | |||
// Add the relation a^{n} = b^2 | // Add the relation a^{n} = b^2 | ||
Append(Relations, [[a^(MEMORY.N)], [-b,b]]); | Append(Relations, [[a^(MEMORY.N)], [-b,b]]); | ||
// Add the relation b^{-1}ab = a^{-1} | // Add the relation b^{-1}ab = a^{-1} | ||
Line 32: | Line 32: | ||
Return Relations; | Return Relations; | ||
EndDefine; | EndDefine; | ||
Relations:=CreateRelationsDicyclic(); | |||
Relations; | |||
// Compute a Groebner basis | |||
Gb:=NC.GB(Relations); | |||
Gb; | |||
// Compute the values of the Hilbert-Dehn function | |||
NC.HF(Gb); | |||
// The order of the dicyclic group | |||
Sum(It); | |||
====Example in Symbolic Data Format==== | |||
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> | |||
<vars>a,b</vars> | |||
<basis> | |||
<ncpoly>a^(2*5)-1</ncpoly> | |||
<ncpoly>a^5-b*b</ncpoly> | |||
<ncpoly>b*b*b*a*b-a^(2*5-1)</ncpoly> | |||
</basis> | |||
<Comment>Dicyclic_group_5</Comment> | |||
</FREEALGEBRA> |
Latest revision as of 20:29, 22 April 2014
Description
The dicyclic groups are non-abelian groups with order 4n. For n = 2 the dicyclic group is isomporphic to the quarternion group Q. Note that every element of this groups can be written uniquely as a^k x^j for 0 < k < 2n and j = 0 or 1.
Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, b^{-1}ab = a^{-1}>
Reference
Coxeter, H. S. M., "7.1 The Cyclic and Dicyclic groups", Regular Complex Polytopes, Cambridge University, 1974.
Computation
/*Use the ApCoCoA package ncpoly.*/ // Number of Dicyclic group (note that the order is 4N) MEMORY.N:=5; Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsDicyclic() Relations:=[]; // Add the relation a^{2n} = 1 Append(Relations, [[a^(2*MEMORY.N)], [1]]); // Add the relation a^{n} = b^2 Append(Relations, [[a^(MEMORY.N)], [-b,b]]); // Add the relation b^{-1}ab = a^{-1} Append(Relations, [[b^(3),a,b],[a^(2*MEMORY.N-1)]]); Return Relations; EndDefine; Relations:=CreateRelationsDicyclic(); Relations; // Compute a Groebner basis Gb:=NC.GB(Relations); Gb; // Compute the values of the Hilbert-Dehn function NC.HF(Gb); // The order of the dicyclic group Sum(It);
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a,b</vars> <basis> <ncpoly>a^(2*5)-1</ncpoly> <ncpoly>a^5-b*b</ncpoly> <ncpoly>b*b*b*a*b-a^(2*5-1)</ncpoly> </basis> <Comment>Dicyclic_group_5</Comment> </FREEALGEBRA>