# Difference between revisions of "ApCoCoA-1:DA.DiffGB"

From ApCoCoAWiki

(Description update.) |
|||

Line 11: | Line 11: | ||

<item>@return If terminating, a list of differential polynomials that form a differential Groebner basis of I.</item> | <item>@return If terminating, a list of differential polynomials that form a differential Groebner basis of I.</item> | ||

</itemize> | </itemize> | ||

− | <example>Use | + | <example>Use QQ[x[1..1,0..20]]; |

− | Use | + | Use QQ[x[1..1,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>)); |

DA.DiffGB([x[1,1]^4+x[1,0]]); | DA.DiffGB([x[1,1]^4+x[1,0]]); | ||

------------------------------- | ------------------------------- |

## Revision as of 10:56, 28 April 2009

## DA.DiffGB

Calculates a differential Groebner basis.

### Syntax

DA.DiffGB(I:IDEAL):LIST

### Description

Returns a differential Groebner basis of the ideal I which is differentially generated by G wrt. the current differential term ordering. This function only terminates if the ideal I is zero dimensional and has a finite differential Groebner basis.

@param

*I*A differential ideal.@return If terminating, a list of differential polynomials that form a differential Groebner basis of I.

#### Example

Use QQ[x[1..1,0..20]]; Use QQ[x[1..1,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>)); DA.DiffGB([x[1,1]^4+x[1,0]]); ------------------------------- [x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]] -------------------------------