ApCoCoA-1:Cyclic groups: Difference between revisions

From ApCoCoAWiki
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
=== <div id="Cyclic_groups">[[:ApCoCoA:Symbolic data#Cyclic_groups|Cyclic groups]]</div> ===
=== <div id="Cyclic_groups">[[:ApCoCoA:Symbolic data#Cyclic_groups|Cyclic Groups]]</div> ===
==== Description ====
==== Description ====
Every cyclic group is generated by a single element a. If n is finite the group is isomorphic to Z/nZ, otherwise it can be
Every cyclic group is generated by a single element a. If n is finite the group is isomorphic to Z/nZ, otherwise it can be
Line 33: Line 33:
   // RESULT for MEMORY.N = 5 :: [[[a^5], [1]]]
   // RESULT for MEMORY.N = 5 :: [[[a^5], [1]]]


==== Examples in Symbolic Data format ====
==== Example in Symbolic Data Format ====
=====Cyclic group 5=====
   <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
   <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
   <vars>a</vars>
   <vars>a</vars>
Line 41: Line 40:
   </basis>
   </basis>
   <Comment>Cyclic_group_5</Comment>
   <Comment>Cyclic_group_5</Comment>
  </FREEALGEBRA>
=====Cyclic group 6=====
  <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
    <vars>a</vars>
    <basis>
    <ncpoly>a^6-1</ncpoly>
    </basis>
    <Comment>Cyclic_group_6</Comment>
  </FREEALGEBRA>
=====Cyclic group 7=====
  <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^7-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_7</Comment>
  </FREEALGEBRA>
=====Cyclic group 8=====
  <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^8-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_8</Comment>
  </FREEALGEBRA>
=====Cyclic group 9=====
  <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^9-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_9</Comment>
  </FREEALGEBRA>
=====Cyclic group 10=====
  <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(10)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_10</Comment>
  </FREEALGEBRA>
=====Cyclic group 11=====
  <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(11)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_11</Comment>
  </FREEALGEBRA>
=====Cyclic group 12=====
  <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(12)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_12</Comment>
  </FREEALGEBRA>
=====Cyclic group 13=====
  <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(13)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_13</Comment>
  </FREEALGEBRA>
=====Cyclic group 14=====
  <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(14)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_14</Comment>
  </FREEALGEBRA>
=====Cyclic group 15=====
  <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(15)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_15</Comment>
  </FREEALGEBRA>
=====Cyclic group 16=====
  <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(16)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_16</Comment>
  </FREEALGEBRA>
=====Cyclic group 17=====
  <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(17)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_17</Comment>
  </FREEALGEBRA>
=====Cyclic group 18=====
  <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(18)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_18</Comment>
  </FREEALGEBRA>
=====Cyclic group 19=====
  <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(19)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_19</Comment>
  </FREEALGEBRA>
=====Cyclic group 20=====
  <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(20)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_20</Comment>
  </FREEALGEBRA>
=====Cyclic group 21=====
  <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(21)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_21</Comment>
  </FREEALGEBRA>
=====Cyclic group 22=====
  <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(22)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_22</Comment>
  </FREEALGEBRA>
=====Cyclic group 23=====
  <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
  <vars>a</vars>
  <basis>
  <ncpoly>a^(23)-1</ncpoly>
  </basis>
  <Comment>Cyclic_group_23</Comment>
   </FREEALGEBRA>
   </FREEALGEBRA>

Latest revision as of 20:28, 22 April 2014

Description

Every cyclic group is generated by a single element a. If n is finite the group is isomorphic to Z/nZ, otherwise it can be interpreted as Z with the addition of integers as the group operation. For every cyclic group there only exists one subgroup containing a, the group itself.

C(n) = <a | a^{n} = 1>

Reference

Joseph A. Gallian, Contemporary Abstract Algebra (4th ed.), Boston: Houghton Mifflin, Chapter 4, 1998.

Computation

 /*Use the ApCoCoA package ncpoly.*/
 
 // Number of cyclic group
 MEMORY.N:=5;
 
 Use ZZ/(2)[a];
 NC.SetOrdering("LLEX");
 
 Define CreateRelationsCyclic()
   Relations:=[];
   // Add relation a^n = 1
   Append(Relations,[[a^MEMORY.N],[1]]);
   Return Relations;
 EndDefine;
 
 Relations:=CreateRelationsCyclic();
 Relations;
 
 // Compute a Groebner Basis.
 Gb:=NC.GB(Relations);
 Gb;
 // RESULT for MEMORY.N = 5 :: [[[a^5], [1]]]

Example in Symbolic Data Format

 <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
 	<vars>a</vars>
 	<basis>
 	<ncpoly>a^5-1</ncpoly>
 	</basis>
 	<Comment>Cyclic_group_5</Comment>
 </FREEALGEBRA>