Difference between revisions of "ApCoCoA1:CharP.GBasisF1024"
m (ApCoCoA:Char2.GBasisF1024 moved to ApCoCoA:CharP.GBasisF1024) 

(No difference)

Revision as of 15:21, 6 December 2010
Char2.GBasisF1024
Computing a Groebner basis of a given ideal in F_1024.
Syntax
Char2.GBasisF1024(Ideal:IDEAL):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command computes a Groebner basis in the field F_1024 = (Z/(2))[x]/(x^10 + x^3 + x^2 + x + 1).
@param Ideal An Ideal in a Ring over Z, where the elements 0,...,1023 represent the elements of the finite field. For short, the binary representation of the number represents the coefficient vector of the polynomial in the field, e.g. 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0. So the number 11 corresponds to the polynomial x^3 + x + 1.
@return A Groebner Basis of the given ideal.
Example
Use R::=QQ[x,y,z]; I:=Ideal(xy^2,x^2+xy,y^3); GBasis(I); [x^2 + xy, y^2 + x, xy]  Use Z::=ZZ[x,y,z]; I:=Ideal(xy^2,x^2+xy,y^3);  WARNING: Coeffs are not in a field  GBasisrelated computations could fail to terminate or be wrong Char2.GBasisF1024(I);   WARNING: Coeffs are not in a field  GBasisrelated computations could fail to terminate or be wrong  CoCoAServer: computing Cpu Time = 0  [y^2 + 218x, x^2, xy] 
See also
Introduction to Groebner Basis in CoCoA
Representation of finite fields