Difference between revisions of "ApCoCoA-1:BBSGen.NonStandPoly"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
 
   <title>BBSGen.Wmat</title>
 
   <title>BBSGen.Wmat</title>
   <short_description>This function computes the non-standard polynomials with respect to the arrpw grading among the generators of the vanishing ideal of border basis
+
   <short_description>This function computes the non-standard polynomial  generators of the vanishing ideal of border basis
scheme.
+
scheme with respect to the arrow grading.
 
              
 
              
 
  </short_description>
 
  </short_description>
 
    
 
    
 
<syntax>
 
<syntax>
NonStandPoly(OO,BO,W,N);  
+
BBSGen.NonStandPoly(OO,BO,W,N);  
NonStandPoly(OO:LIST,BO:LIST,W:MATRIX,N:INTEGER):LIST  
+
BBSGen.NonStandPoly(OO:LIST,BO:LIST,W:MATRIX,N:INTEGER):LIST  
  
 
</syntax>
 
</syntax>
   <description>
+
   <description>Let W be the weight matrix with respect to the arrow grading.(see <ref>BBSGen.Wmat</ref>)
 
+
Let \tau^kl_ij be a polynomials from the generating set of the vanishing ideal of border basis scheme. It  is called standard, if deg_W(\tau^kl_ij) has exactly one  strictly positive component. If \tau^kl_ij is not standard then it is called non-standard. This function computes such non-standard polynomials.
 
<itemize>
 
<itemize>
 
   <item>@param The order ideal OO, BO border of OO , the number of indeterminates of the polynomial ring N and the Weight Matrix.
 
   <item>@param The order ideal OO, BO border of OO , the number of indeterminates of the polynomial ring N and the Weight Matrix.
 
</item>
 
</item>
   <item>@return List of polynomials  and their degree wrt. the arrow grading.  .</item>
+
   <item>@return List of polynomials  and their degree with respect to the arrow grading.  .</item>
 
</itemize>
 
</itemize>
  
Line 25: Line 25:
 
OO:=BB.Box([1,1]);
 
OO:=BB.Box([1,1]);
 
BO:=BB.Border(OO);
 
BO:=BB.Border(OO);
 +
N:=Len(Indets());
 
W:=BBSGen.Wmat(OO,BO,N);
 
W:=BBSGen.Wmat(OO,BO,N);
 
XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
 
XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
 
Use XX;
 
Use XX;
 +
  
 
BBSGen.NonStandPoly(OO,BO,W,N);
 
BBSGen.NonStandPoly(OO,BO,W,N);
Line 58: Line 60:
 
     <type>apcocoaserver</type>
 
     <type>apcocoaserver</type>
 
   </types>
 
   </types>
<see>BB.Border</see>
+
 
  <see>BB.Box</see>
 
 
  <see>BBSGen.Wmat</see>
 
  <see>BBSGen.Wmat</see>
 
<see>BBSGen.NonStand</see>
 
<see>BBSGen.NonStand</see>

Revision as of 09:53, 8 June 2012

BBSGen.Wmat

This function computes the non-standard polynomial generators of the vanishing ideal of border basis

scheme with respect to the arrow grading.


Syntax

BBSGen.NonStandPoly(OO,BO,W,N); 
BBSGen.NonStandPoly(OO:LIST,BO:LIST,W:MATRIX,N:INTEGER):LIST 

Description

Let W be the weight matrix with respect to the arrow grading.(see BBSGen.Wmat)

Let \tau^kl_ij be a polynomials from the generating set of the vanishing ideal of border basis scheme. It is called standard, if deg_W(\tau^kl_ij) has exactly one strictly positive component. If \tau^kl_ij is not standard then it is called non-standard. This function computes such non-standard polynomials.

  • @param The order ideal OO, BO border of OO , the number of indeterminates of the polynomial ring N and the Weight Matrix.

  • @return List of polynomials and their degree with respect to the arrow grading. .


Example

Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
N:=Len(Indets());
W:=BBSGen.Wmat(OO,BO,N);
XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 
Use XX;


BBSGen.NonStandPoly(OO,BO,W,N);

  [  c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3],
    R :: Vector(1, 2)],
  [ c[1,1]c[2,2] + c[1,3]c[4,2] - c[1,4],
    R :: Vector(2, 1)],
  [ c[1,1]c[2,4] - c[1,2]c[3,3] - c[1,4]c[4,3] + c[1,3]c[4,4],
    R :: Vector(2, 2)],
  [c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3],
    R :: Vector(1, 1)],
  [c[2,1]c[2,4] - c[2,2]c[3,3] - c[2,4]c[4,3] + c[2,3]c[4,4] + c[1,4],
    R :: Vector(2, 1)],
  [c[2,2]c[3,1] + c[3,3]c[4,2] - c[3,4],
    R :: Vector(1, 1)],
  [c[2,4]c[3,1] - c[3,2]c[3,3] - c[3,4]c[4,3] + c[3,3]c[4,4] - c[1,3],
    R :: Vector(1, 2)],
  [c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4],
    R :: Vector(1, 1)]]





BBSGen.Wmat

BBSGen.NonStand