Difference between revisions of "ApCoCoA-1:BBSGen.JacobiFull"

From ApCoCoAWiki
Line 13: Line 13:
 
Let R=K[x_1,...,x_n] and A_k be the generic multiplication matrix associated to x_k. Let  Tau^kl_ij be the polynomial in the (i,j) position of the  [A_k,A_l] where k,l \in {1,..,n}.  
 
Let R=K[x_1,...,x_n] and A_k be the generic multiplication matrix associated to x_k. Let  Tau^kl_ij be the polynomial in the (i,j) position of the  [A_k,A_l] where k,l \in {1,..,n}.  
 
    
 
    
This function computes the entries of the Jacobi identity  J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] , where m,k,l is from {1...n}. During the computation  entries of the commutators Tau^kl_ij will be  considered as indeterminates  t[k,l,i,j]\in XX.
+
This function computes the entries of the Jacobi identity  J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ]=0 , where m,k,l is from {1...n} and during the computation  entries of the commutators Tau^kl_ij will be  considered as indeterminates  t[k,l,i,j]\in XX.
  
 
   When the polynomial entries of the above matrix are large, one may not have a result. In that case we recommend JacobiStep or JacobiLin.
 
   When the polynomial entries of the above matrix are large, one may not have a result. In that case we recommend JacobiStep or JacobiLin.
Line 21: Line 21:
  
 
<itemize>
 
<itemize>
   <item>@param  Order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Border<\commandref> in the package borderbasis)
+
   <item>@param  Order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Border</commandref> in the package borderbasis)
  
 
</item>
 
</item>
Line 53: Line 53:
 
     <type>apcocoaserver</type>
 
     <type>apcocoaserver</type>
 
   </types>
 
   </types>
 
+
<see>BB.Border</see>
 +
  <see>BB.Box</see>
 
<see>BBSGen.JacobiStep</see>
 
<see>BBSGen.JacobiStep</see>
 
<see>BBSGen.JacobiLin</see>
 
<see>BBSGen.JacobiLin</see>

Revision as of 09:03, 8 June 2012

BBSGen.TraceSyzStep

This function computes the entries of the Jacobi identity matrix J^klm [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ]=0 , where m,k,l is from {1...n}.

Syntax

BBSGen.JacobiFull(OO,BO,N);
BBSGen.JacobiFull(OO:LIST,BO:LIST,N:INTEGER):MATRIX

Description

Let R=K[x_1,...,x_n] and A_k be the generic multiplication matrix associated to x_k. Let Tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l \in {1,..,n}.

This function computes the entries of the Jacobi identity J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ]=0 , where m,k,l is from {1...n} and during the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j]\in XX.

 When the polynomial entries of the above matrix are large, one may not have a result. In that case we recommend JacobiStep or JacobiLin.

Please note that this function does not work for the case, where n=2.


  • @param Order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Border</commandref> in the package borderbasis)


  • @return The entries of the Jacobi Identity J^{ikl}. .


Example

Use R::=QQ[x[1..3]];

OO:=[1,x[1]];
BO:=BB.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

BBSGen.JacobiFull(OO,BO,N);

[[   [c[1,1]t[1,2,1,1] + c[1,3]t[1,2,2,1] + c[1,2]t[1,3,1,1] + c[1,4]t[1,3,2,1] + c[1,5]t[2,3,2,1],
      c[1,1]t[1,2,1,2] + c[1,3]t[1,2,2,2] + c[1,2]t[1,3,1,2] + c[1,4]t[1,3,2,2] + c[1,5]t[2,3,2,2]],
    [ c[2,1]t[1,2,1,1] + c[2,3]t[1,2,2,1] + c[2,2]t[1,3,1,1] + c[2,4]t[1,3,2,1] + c[2,5]t[2,3,2,1] + t[2,3,1,1],
      c[2,1]t[1,2,1,2] + c[2,3]t[1,2,2,2] + c[2,2]t[1,3,1,2] + c[2,4]t[1,3,2,2] + c[2,5]t[2,3,2,2] + t[2,3,1,2]]]]

BB.Border

BB.Box

BBSGen.JacobiStep

BBSGen.JacobiLin