ApCoCoA-1:BB.HomBBscheme: Difference between revisions
From ApCoCoAWiki
Types section update. |
Description update. |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BB.HomBBscheme</title> | |||
<short_description>Compute the defining equations of a homogeneous border basis scheme.</short_description> | |||
<syntax> | <syntax>BB.HomBBscheme(OO:LIST):IDEAL</syntax> | ||
BB.HomBBscheme(OO:LIST):IDEAL | <description> | ||
</syntax> | Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}]. | ||
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring | |||
<itemize> | <itemize> | ||
<item>@param <em>OO</em> A list of terms representing an order ideal.</item> | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
<item>@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].</item> | <item>@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].</item> | ||
</itemize> | </itemize> | ||
</description> | |||
<types> | <types> | ||
<type>list</type> | <type>list</type> | ||
</types> | </types> | ||
<see>BB.BBscheme</see> | |||
<key>HomBBscheme</key> | |||
<key>BB.HomBBscheme</key> | |||
<key>borderbasis.HomBBscheme</key> | |||
<wiki-category>Package_borderbasis</wiki-category> | |||
</command> | </command> |
Revision as of 11:13, 24 April 2009
BB.HomBBscheme
Compute the defining equations of a homogeneous border basis scheme.
Syntax
BB.HomBBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}].
@param OO A list of terms representing an order ideal.
@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].