ApCoCoA-1:BB.GenericHomBB: Difference between revisions

From ApCoCoAWiki
Skaspar (talk | contribs)
Added parameter and return value list.
Skaspar (talk | contribs)
Updated parameter and return value list.
Line 7: Line 7:
     <description>
     <description>
Computes the <quotes>generic</quotes> homogeneous border basis w.r.t. an order ideal OO. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a <quotes>universal family ring</quotes> UF where <formula>UF = K[x_1,..,x_n,c_{ij}]</formula>.
Computes the <quotes>generic</quotes> homogeneous border basis w.r.t. an order ideal OO. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a <quotes>universal family ring</quotes> UF where <formula>UF = K[x_1,..,x_n,c_{ij}]</formula>.
    <itemize>
<itemize>
      <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
  <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
      <item>@return A list of generic homogeneous border basis polynomials w.r.t. to an order ideal OO. The polynomials will belong to the ring UF = K[x_1,..,x_n,c_{ij}].</item>
  <item>@return A list of generic homogeneous border basis polynomials w.r.t. to an order ideal OO. The polynomials will belong to the ring UF = K[x_1,..,x_n,c_{ij}].</item>
    </itemize>
</itemize>
     </description>
     </description>
     <key>kreuzer</key>
     <key>kreuzer</key>

Revision as of 14:13, 22 April 2009

BB.GenericHomBB

Compute a generic homogeneous border basis.

Syntax

BB.GenericHomBB(OO:LIST):LIST

Description

Computes the "generic" homogeneous border basis w.r.t. an order ideal OO. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a "universal family ring" UF where <formula>UF = K[x_1,..,x_n,c_{ij}]</formula>.

  • @param OO A list of terms representing an order ideal.

  • @return A list of generic homogeneous border basis polynomials w.r.t. to an order ideal OO. The polynomials will belong to the ring UF = K[x_1,..,x_n,c_{ij}].