# Difference between revisions of "ApCoCoA-1:BB.Box"

From ApCoCoAWiki

(Shortened short description) |
m (insert version info) |
||

(23 intermediate revisions by 7 users not shown) | |||

Line 1: | Line 1: | ||

+ | {{Version|1}} | ||

<command> | <command> | ||

− | + | <title>BB.Box</title> | |

− | + | <short_description>Computes a box order ideal.</short_description> | |

+ | |||

<syntax> | <syntax> | ||

− | + | BB.Box(D:LIST):LIST | |

</syntax> | </syntax> | ||

− | + | <description> | |

− | Computes the | + | Computes the box order ideal of type <tt>D=[D_1,..,D_N]</tt>. The input is a list of integers <tt>D</tt> of length <ref>ApCoCoA-1:NumIndets|NumIndets</ref>(). The output is a list of terms sorted in ascending order with respect to the current term ordering. |

− | </ | + | <itemize> |

− | <key> | + | <item>@param <em>D</em> List of integer values representing an exponent vector of a term. The order ideal spanned by the term represented by this exponent vector will be computed.</item> |

− | + | <item>@return A list of terms of the order ideal spanned by the term represented by the exponent vector <tt>D</tt>, sorted in ascending order w.r.t. the current term ordering.</item> | |

− | + | </itemize> | |

− | + | <example> | |

+ | Use QQ[x,y,z]; | ||

+ | BB.Box([2,1,1]); | ||

+ | |||

+ | [1, z, y, x, yz, xz, xy, x^2, xyz, x^2z, x^2y, x^2yz] | ||

+ | ------------------------------- | ||

+ | </example> | ||

+ | </description> | ||

+ | <types> | ||

+ | <type>borderbasis</type> | ||

+ | <type>ideal</type> | ||

+ | </types> | ||

+ | <see>ApCoCoA-1:BB.Border|BB.Border</see> | ||

+ | |||

+ | <key>Box</key> | ||

+ | <key>BB.Box</key> | ||

+ | <key>borderbasis.Box</key> | ||

+ | <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category> | ||

</command> | </command> |

## Latest revision as of 09:40, 7 October 2020

This article is about a function from ApCoCoA-1. |

## BB.Box

Computes a box order ideal.

### Syntax

BB.Box(D:LIST):LIST

### Description

Computes the box order ideal of type `D=[D_1,..,D_N]`. The input is a list of integers `D` of length NumIndets(). The output is a list of terms sorted in ascending order with respect to the current term ordering.

@param

*D*List of integer values representing an exponent vector of a term. The order ideal spanned by the term represented by this exponent vector will be computed.@return A list of terms of the order ideal spanned by the term represented by the exponent vector

`D`, sorted in ascending order w.r.t. the current term ordering.

#### Example

Use QQ[x,y,z]; BB.Box([2,1,1]); [1, z, y, x, yz, xz, xy, x^2, xyz, x^2z, x^2y, x^2yz] -------------------------------