ApCoCoA-1:Other13" groups
From ApCoCoAWiki
Description
This group has the following finite representation:
G = <x,y | x^2 = xy^{a}xy^{b}xy^{c}xy^{d} = 1>
Reference
No reference available
Computation
/*Use the ApCoCoA package ncpoly.*/ // Note that a,b >= 1 and n >= 2 MEMORY.A := 3; MEMORY.B := 3; MEMORY.C := 4; MEMORY.D := 5; // y is invers to z, the invers element of x follows directly from the relation x^2 = 1 Use ZZ/(2)[x,y,z]; NC.SetOrdering("LLEX"); Define CreateRelationsOther13() Relations:=[]; // add the relation of the invers elements yz = zy = 1 Append(Relations,[[y,z],[1]]); Append(Relations,[[z,y],[1]]); // add the relation x^2 = 1 Append(Relations,[[x,x],[1]]); // add the relation xy^{a}xy^{b}xy^{c}xy^{d} Append(Relations,[[x,y^(MEMORY.A),x,y^(MEMORY.B),x,y^(MEMORY.C),x,y^(MEMORY.D)],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther13(); GB:=NC.GB(Relations,31,1,100,1000);