ApCoCoA-1:Num.SimDiag
From ApCoCoAWiki
This article is about a function from ApCoCoA-1. |
Num.SimDiag
Computes an approximate diagonalization of a set of matrices.
Syntax
Num.SimDiag(A:LIST, MaxIt:INT):[B:MAT, C:MAT]
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function returns a list of two matrices, containing the approximate (almost) eigenvectors of the matrices in A and its inverse.
@param A A list of quadratic matrices with rational entries.
@param MaxIt The maximum number of iterations.
@return The output is a list of two matrices [B:MAT, C:MAT]. The first matrix B contains the real almost eigenvectors of the matrices in A. The matrix C is the inverse of B.
Example
M1 := Mat([[0, 0, -0.079, -0.018],[0, 0, 0.032, -0.012], [1, 0, 1.056, -0.012],[0, 1, -0.060, 1.025]]); M2 := Mat([[0, -0.063, 0, -0.018],[1, 1.026, 0, -0.012], [0, 0, 0, -0.012], [0, 0, 1, 1.025]]); M1 := Transposed(M1); M2 := Transposed(M2); Result := Num.SimDiag([M1,M2],10); Dec(Result[2]*M1*Result[1],3); Dec(Result[2]*M2*Result[1],3); Mat([ ["0.062", "0.016", "0.000", "0.006"], ["0.021", "0.030", "-0.002", "-0.000"], ["0.000", "0.005", "1.006", "-0.035"], ["-0.000", "-0.000", "-0.031", "0.982"] ]) ------------------------------- Mat([ ["0.048", "0.000", "0.030", "-0.005"], ["0.000", "0.991", "-0.002", "-0.021"], ["0.020", "0.005", "0.029", "-0.000"], ["0.000", "-0.030", "-0.000", "0.982"] ]) -----------------------------
See also