ApCoCoA-1:Num.EigenValuesAndAllVectors
Num.EigenValuesAndAllVectors
Computes eigenvalues and left and right eigenvectors of a matrix
Syntax
Num.EigenValuesAndAllVectors(A:MAT):[B:MAT, C:MAT, D:MAT, E:MAT , F:MAT]
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function returns a list of five matrices, containing numerical approximation to A's eigenvalues and right and left eigenvectors.
@param A A square matrix with rational entries.
@return The output [B:Matrix, C:Matrix, D:Matrix, E:Matrix, F:Matrix] contains a matrix B, where each column contains one of A's eigenvalues. The first row contains the eigenvalue's real part, the second row the imaginary. The matrices C, D, E and F all have the same dimensions as A. Column j of matrix C contains the real part of the right eigenvector corresponding to eigenvalue j and column j of matrix D contains the imaginary part of the right eigenvector correspsonding to eigenvalue j. The matrices E and F store the left eigenvectors in the same way as C and D.
Example
A:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10],[7,5,3,2]]); Dec(Num.EigenValuesAndAllVectors(A),3); -- CoCoAServer: computing Cpu Time = 0.016 ------------------------------- [Mat([ [<quotes>28.970</quotes>, <quotes>-13.677</quotes>, <quotes>0.353</quotes>, <quotes>0.353</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>3.051</quotes>, <quotes>-3.051</quotes>] ]), Mat([ [<quotes>0.538</quotes>, <quotes>-0.600</quotes>, <quotes>0.389</quotes>, <quotes>0.389</quotes>], [<quotes>0.311</quotes>, <quotes>-0.222</quotes>, <quotes>-0.442</quotes>, <quotes>-0.442</quotes>], [<quotes>0.427</quotes>, <quotes>0.174</quotes>, <quotes>0.050</quotes>, <quotes>0.050</quotes>], [<quotes>0.656</quotes>, <quotes>0.748</quotes>, <quotes>0</quotes>, <quotes>0</quotes>] ]), Mat([ [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>-0.174</quotes>, <quotes>0.174</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>0.139</quotes>, <quotes>-0.139</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>0.265</quotes>, <quotes>-0.265</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>-0.727</quotes>, <quotes>0.727</quotes>] ]), Mat([ [<quotes>0.394</quotes>, <quotes>-0.581</quotes>, <quotes>0.260</quotes>, <quotes>0.260</quotes>], [<quotes>0.435</quotes>, <quotes>-0.442</quotes>, <quotes>-0.547</quotes>, <quotes>-0.547</quotes>], [<quotes>0.763</quotes>, <quotes>0.621</quotes>, <quotes>0</quotes>, <quotes>0</quotes>], [<quotes>0.268</quotes>, <quotes>0.281</quotes>, <quotes>0.046</quotes>, <quotes>0.046</quotes>] ]), Mat([ [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>-0.031</quotes>, <quotes>0.031</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>-0.301</quotes>, <quotes>0.301</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>0.680</quotes>, <quotes>-0.680</quotes>], [<quotes>0</quotes>, <quotes>0</quotes>, <quotes>-0.274</quotes>, <quotes>0.274</quotes>] ])] -------------------------------
See also